×

Weak solutions to the heat flow for surfaces of prescribed mean curvature. (English) Zbl 1293.53009

The authors study a Cauchy-Dirichlet problem associated to the heat flow for surfaces of prescribed mean curvature on the unit ball \(B\subset\mathbb{R}^2\), namely
\[ \partial_t u -\Delta u = - 2(H\circ u)D_1u \times D_2u \quad\text{in}\quad B\times (0,\infty), \qquad u=u_0 \quad\text{on}\quad \partial_{\mathrm{par}}(B\times(0,\infty)), (*) \]
with solutions \(u:B\times(0,\infty) \rightarrow \mathbb{R}^3\), given Cauchy-Dirichlet datum \(u_0\), and a bounded continuous function \(H:\mathbb{R}^3 \rightarrow \mathbb{R}\). The parabolic boundary is \(\partial_{\mathrm{par}}(B\times(0,\infty))=\partial B\times (0,\infty) \cup \overline{B}\times \{0\}\).
The stationary case of \((*)\) has been studied intensively, with various existence results obtained by Heinz, Hildebrandt, Gulliver and Spruck, Steffen, and Wente.
The parabolic problem \((*)\) has received much less attention. O. Rey [Math. Ann. 291, No. 1, 123–146 (1991; Zbl 0761.58052)] showed that a Hildebrandt-type condition \(\|u_0\|\leq R\), \(\|H\|_{L^\infty} \leq R^{-1}\), ensures the existence of a classical solution. This result has recently been extended to higher-dimensional \(H\)-flows by C. Leone et al. [J. Math. Pures Appl. (9) 97, No. 3, 282–294 (2012; Zbl 1241.35053)], for bounded Lipschitz continuous \(H\).
In general, one cannot expect the existence of a global solution on \(B\times(0,\infty)\) without some smallness condition on \(H\), due to energy concentration phenomena, i.e., “bubbles” forming in finite time.
Here, the authors prove the existence of a global weak solution by imposing an isoperimetric condition on \(H\) analogous to that used by Steffen. As a special case of their main theorem, the problem \((*)\) has a weak solution with values in \(B_R\subset \mathbb{R}^3\) for data \(u_0\in W^{1,2}(B,B_R)\) provided \(H\) is bounded and continuous and satisfies \[ \int_{\{\xi\in B_R:|H(\xi)|\geq \frac{3}{2R}\}} |H|^3\, d\xi < \frac{9\pi}{2}, \qquad |H(a)|\leq \frac{1}{R} \quad\text{for}\quad a\in \partial B_R. \]
The second main result concerns the long-time behaviour of the weak solution constructed in the first theorem. Under the same assumptions the authors show that there exists a sequence \(t_j\rightarrow\infty\) such that \(u(\cdot,t_j)\rightharpoonup u_\infty\) weakly in \(W^{1,2}(B,\mathbb{R}^3)\) to a solution \(u_\infty\in W^{1,2}(B,\mathbb{R}^3)\) of the stationary problem corresponding to \((*)\). Furthermore, if \(u_0|_{\partial B}\) is continuous, then \(u_\infty\in C^0(\overline{B},\mathbb{R}^3)\cap C_{\mathrm{loc}}^{1,\alpha}(B,\mathbb{R}^3)\), and if \(H\) is Hölder continuous, then \(u_\infty\in C_{\mathrm{loc}}^{2,\alpha}(B,\mathbb{R}^3)\) and \(u_\infty\) is a classical solution.
The construction of weak solutions uses a time discretization procedure that relies on ideas introduced by N. Kikuchi in [NATO ASI Ser., Ser. C, Math. Phys. Sci. 332, 195–199 (1991; Zbl 0850.76043)], which has been used by J.- Haga et al. [Comput. Vis. Sci. 7, No. 1, 53–59 (2004; Zbl 1120.53304)] to reprove results concerning the existence of weak solutions to the harmonic map heat flow previously obtained by Ginzburg-Landau approximations.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
58J35 Heat and other parabolic equation methods for PDEs on manifolds
35K51 Initial-boundary value problems for second-order parabolic systems
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Yongyong Cai and Shulin Zhou, Existence and uniqueness of weak solutions for a non-uniformly parabolic equation, J. Funct. Anal. 257 (2009), no. 10, 3021 – 3042. · Zbl 1184.35155 · doi:10.1016/j.jfa.2009.08.007
[2] Y. Chen and S. Levine, The existence of the heat flow of \?-systems, Discrete Contin. Dyn. Syst. 8 (2002), no. 1, 219 – 236. · Zbl 1136.35403
[3] Frank Duzaar, Variational inequalities and harmonic mappings, J. Reine Angew. Math. 374 (1987), 39 – 60. · Zbl 0597.58006 · doi:10.1515/crll.1987.374.39
[4] Frank Duzaar and Joseph F. Grotowski, Existence and regularity for higher-dimensional \?-systems, Duke Math. J. 101 (2000), no. 3, 459 – 485. · Zbl 0959.35050 · doi:10.1215/S0012-7094-00-10133-0
[5] Frank Duzaar and Giuseppe Mingione, Second order parabolic systems, optimal regularity, and singular sets of solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 6, 705 – 751 (English, with English and French summaries). · Zbl 1099.35042 · doi:10.1016/j.anihpc.2004.10.011
[6] Frank Duzaar and Klaus Steffen, Existence of hypersurfaces with prescribed mean curvature in Riemannian manifolds, Indiana Univ. Math. J. 45 (1996), no. 4, 1045 – 1093. · Zbl 0880.53049 · doi:10.1512/iumj.1996.45.1117
[7] Frank Duzaar and Klaus Steffen, Parametric surfaces of least \?-energy in a Riemannian manifold, Math. Ann. 314 (1999), no. 2, 197 – 244. · Zbl 0953.53007 · doi:10.1007/s002080050292
[8] Goswin Eisen, A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals, Manuscripta Math. 27 (1979), no. 1, 73 – 79. · Zbl 0404.28004 · doi:10.1007/BF01297738
[9] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[10] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[11] Andreas Gastel and Christoph Scheven, Regularity of polyharmonic maps in the critical dimension, Comm. Anal. Geom. 17 (2009), no. 2, 185 – 226. · Zbl 1183.58010 · doi:10.4310/CAG.2009.v17.n2.a2
[12] Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. · Zbl 0516.49003
[13] Enrico Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. · Zbl 1028.49001
[14] Robert Gulliver and Joel Spruck, The Plateau problem for surfaces of prescribed mean curvature in a cylinder, Invent. Math. 13 (1971), 169 – 178. · Zbl 0214.11103 · doi:10.1007/BF01390099
[15] Robert Gulliver and Joel Spruck, Existence theorems for parametric surfaces of prescribed mean curvature, Indiana Univ. Math. J. 22 (1972/73), 445 – 472. · Zbl 0233.53004 · doi:10.1512/iumj.1972.22.22040
[16] Jun-ichi Haga, Keisuke Hoshino, and Norio Kikuchi, Construction of harmonic map flows through the method of discrete Morse flows, Comput. Vis. Sci. 7 (2004), no. 1, 53 – 59. · Zbl 1120.53304 · doi:10.1007/s00791-004-0130-7
[17] Erhard Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann. 127 (1954), 258 – 287 (German). · Zbl 0055.15303 · doi:10.1007/BF01361126
[18] Erhard Heinz and Friedrich Tomi, Zu einem Satz von Hildebrandt über das Randverhalten von Minimalflächen, Math. Z. 111 (1969), 372 – 386 (German). · Zbl 0172.38601 · doi:10.1007/BF01110748
[19] Stefan Hildebrandt, Randwertprobleme für Flächen mit vorgeschiebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie. I. Fest vorgebener Rand, Math. Z. 112 (1969), 205 – 213 (German). · Zbl 0175.40403 · doi:10.1007/BF01110219
[20] Stefan Hildebrandt, Einige Bemerkungen über Flächen beschränkter mittlerer Krümmung, Math. Z. 115 (1970), 169 – 178 (German). · Zbl 0185.50201 · doi:10.1007/BF01109855
[21] Stefan Hildebrandt and Helmut Kaul, Two-dimensional variational problems with obstructions, and Plateau’s problem for \?-surfaces in a Riemannian manifold, Comm. Pure Appl. Math. 25 (1972), 187 – 223. · Zbl 0245.53006 · doi:10.1002/cpa.3160250208
[22] Norio Kikuchi, An approach to the construction of Morse flows for variational functionals, Nematics (Orsay, 1990) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 332, Kluwer Acad. Publ., Dordrecht, 1991, pp. 195 – 199. · Zbl 0850.76043
[23] C. Leone, M. Misawa, and A. Verde, A global existence result for the heat flow of higher dimensional \?-systems, J. Math. Pures Appl. (9) 97 (2012), no. 3, 282 – 294 (English, with English and French summaries). · Zbl 1241.35053 · doi:10.1016/j.matpur.2011.11.001
[24] Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0142.38701
[25] Roger Moser, Weak solutions of a biharmonic map heat flow, Adv. Calc. Var. 2 (2009), no. 1, 73 – 92. · Zbl 1165.58008 · doi:10.1515/ACV.2009.004
[26] Olivier Rey, Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann. 291 (1991), no. 1, 123 – 146. · Zbl 0761.58052 · doi:10.1007/BF01445195
[27] Tristan Rivière, Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007), no. 1, 1 – 22. · Zbl 1128.58010 · doi:10.1007/s00222-006-0023-0
[28] Jacques Simon, Compact sets in the space \?^{\?}(0,\?;\?), Ann. Mat. Pura Appl. (4) 146 (1987), 65 – 96. · Zbl 0629.46031 · doi:10.1007/BF01762360
[29] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. · Zbl 0546.49019
[30] K. Steffen, Isoperimetric inequalities and the problem of Plateau, Math. Ann. 222 (1976), no. 2, 97 – 144. · Zbl 0345.49024 · doi:10.1007/BF01418324
[31] Klaus Steffen, On the existence of surfaces with prescribed mean curvature and boundary, Math. Z. 146 (1976), no. 2, 113 – 135. · Zbl 0343.49016 · doi:10.1007/BF01187700
[32] Michael Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558 – 581. · Zbl 0595.58013 · doi:10.1007/BF02567432
[33] Michael Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math. 160 (1988), no. 1-2, 19 – 64. · Zbl 0646.53005 · doi:10.1007/BF02392272
[34] Friedrich Tomi, Ein einfacher Beweis eines Regularitässatzes für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 112 (1969), 214 – 218 (German). · Zbl 0177.14704 · doi:10.1007/BF01110220
[35] Henry C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318 – 344. · Zbl 0181.11501 · doi:10.1016/0022-247X(69)90156-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.