×

Groups acting on Gaussian graphical models. (English) Zbl 1292.62098

Summary: Gaussian graphical models have become a well-recognized tool for the analysis of conditional independencies within a set of continuous random variables. From an inferential point of view, it is important to realize that they are composite exponential transformation families. We reveal this structure by explicitly describing, for any undirected graph, the (maximal) matrix group acting on the space of concentration matrices in the model. The continuous part of this group is captured by a poset naturally associated to the graph, while automorphisms of the graph account for the discrete part of the group. We compute the dimension of the space of orbits of this group on concentration matrices, in terms of the combinatorics of the graph; and for dimension zero we recover the characterization by Letac and Massam of models that are transformation families. Furthermore, we describe the maximal invariant of this group on the sample space, and we give a sharp lower bound on the sample size needed for the existence of equivariant estimators of the concentration matrix. Finally, we address the issue of robustness of these estimators by computing upper bounds on finite sample breakdown points.

MSC:

62H99 Multivariate analysis
62F35 Robustness and adaptive procedures (parametric inference)
54H15 Transformation groups and semigroups (topological aspects)

Software:

robustbase

References:

[1] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis , 3rd ed. Wiley, Hoboken, NJ. · Zbl 1039.62044
[2] Andersson, S. A. and Klein, T. (2010). On Riesz and Wishart distributions associated with decomposable undirected graphs. J. Multivariate Anal. 101 789-810. · Zbl 1279.62134 · doi:10.1016/j.jmva.2009.12.005
[3] Andersson, S. A. and Perlman, M. D. (1993). Lattice models for conditional independence in a multivariate normal distribution. Ann. Statist. 21 1318-1358. · Zbl 0803.62042 · doi:10.1214/aos/1176349261
[4] Andersson, S. A., Madigan, D., Perlman, M. D. and Triggs, C. M. (1995). On the relation between conditional independence models determined by finite distributive lattices and by directed acyclic graphs. J. Statist. Plann. Inference 48 25-46. · Zbl 0839.62063 · doi:10.1016/0378-3758(94)00150-T
[5] Barndorff-Nielsen, O. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika 70 343-365. · Zbl 0532.62006 · doi:10.1093/biomet/70.2.343
[6] Barndorff-Nielsen, O., Blæsild, P., Jensen, J. L. and Jørgensen, B. (1982). Exponential transformation models. Proc. Roy. Soc. London Ser. A 379 41-65. · Zbl 0478.62005 · doi:10.1098/rspa.1982.0004
[7] Barrett, W. W., Johnson, C. R. and Loewy, R. (1996). The real positive definite completion problem: Cycle completability. Mem. Amer. Math. Soc. 122 viii\(+\)69. · Zbl 0857.05068 · doi:10.1090/memo/0584
[8] Becker, C. (2005). Iterative proportional scaling based on a robust start estimator. In Classification-The Ubiquitous Challenge (C. Weihs and W. Gaul, eds.) 248-255. Springer, Berlin.
[9] Borel, A. (1991). Linear Algebraic Groups , 2nd ed. Graduate Texts in Mathematics 126 . Springer, New York. · Zbl 0726.20030
[10] Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scand. J. Stat. 20 263-270. · Zbl 0778.62046
[11] Davies, P. L. and Gather, U. (2005). Breakdown and groups. Ann. Statist. 33 977-1035. · Zbl 1077.62041 · doi:10.1214/009053604000001138
[12] Davies, P. L. and Gather, U. (2007). The breakdown point-Examples and counterexamples. REVSTAT 5 1-17. · Zbl 1513.62070
[13] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Ph.D. thesis, Harvard Univ.
[14] Donoho, D. and Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich L. Lehmann 157-184. Wadsworth, Belmont, CA. · Zbl 0523.62032
[15] Draisma, J., Kuhnt, S. and Zwiernik, P. (2013). Supplement to “Groups acting on Gaussian graphical models.” . · Zbl 1292.62098
[16] Drton, M. and Richardson, T. S. (2008). Graphical methods for efficient likelihood inference in Gaussian covariance models. J. Mach. Learn. Res. 9 893-914. · Zbl 1225.62031
[17] Eaton, M. L. (1989). Group Invariance Applications in Statistics. NSF-CBMS Regional Conference Series in Probability and Statistics , 1. IMS, Hayward, CA. · Zbl 0749.62005
[18] Finegold, M. and Drton, M. (2011). Robust graphical modeling of gene networks using classical and alternative \(t\)-distributions. Ann. Appl. Stat. 5 1057-1080. · Zbl 1232.62083 · doi:10.1214/10-AOAS410
[19] Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proceedings of the Royal Society of London. Series A , Containing Papers of a Mathematical and Physical Character 144 285-307. · Zbl 0009.21902 · doi:10.1098/rspa.1934.0050
[20] Gottard, A. and Pacillo, S. (2006). On the impact of contaminations in graphical Gaussian models. Stat. Methods Appl. 15 343-354. · Zbl 1187.62121 · doi:10.1007/s10260-006-0041-5
[21] Gottard, A. and Pacillo, S. (2010). Robust concentration graph model selection. Comput. Statist. Data Anal. 54 3070-3079. · Zbl 1284.62199
[22] Hampel, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42 1887-1896. · Zbl 0229.62041 · doi:10.1214/aoms/1177693054
[23] James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proc. 4 th Berkeley Sympos. Math. Statist. and Prob. , Vol. I 361-379. Univ. California Press, Berkeley, CA. · Zbl 1281.62026
[24] Konno, Y. (2001). Inadmissibility of the maximum likelihood estimator of normal covariance matrices with the lattice conditional independence. J. Multivariate Anal. 79 33-51. · Zbl 1152.62304 · doi:10.1006/jmva.2000.1955
[25] Kuhnt, S. and Becker, C. (2003). Sensitivity of graphical modeling against contamination. In Between Data Science and Applied Data Analysis (M. Schader, W. Gaul and M. Vichi, eds.) 279-287. Springer, Berlin. · Zbl 05280183
[26] Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17 . Oxford Univ. Press, New York. · Zbl 0907.62001
[27] Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses , 3rd ed. Springer, New York. · Zbl 1076.62018
[28] Letac, G. and Massam, H. (2007). Wishart distributions for decomposable graphs. Ann. Statist. 35 1278-1323. · Zbl 1194.62078 · doi:10.1214/009053606000001235
[29] Lopuhaä, H. P. and Rousseeuw, P. J. (1991). Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Statist. 19 229-248. · Zbl 0733.62058 · doi:10.1214/aos/1176347978
[30] Malyšev, F. M. (1977). Closed subsets of roots and the cohomology of regular subalgebras. Mat. Sb. 104(146) 140-150, 176.
[31] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics : Theory and Methods . Wiley, Chichester. · Zbl 1094.62040
[32] Miyamura, M. and Kano, Y. (2006). Robust Gaussian graphical modeling. J. Multivariate Anal. 97 1525-1550. · Zbl 1093.62038 · doi:10.1016/j.jmva.2006.02.006
[33] Reid, N. (1995). The roles of conditioning in inference. Statist. Sci. 10 138-157, 173-189, 193-196. · Zbl 0955.62524 · doi:10.1214/ss/1177010027
[34] Schervish, M. J. (1995). Theory of Statistics . Springer, New York. · Zbl 0834.62002
[35] Stahel, W. (1981). Robust estimation: Infinitesimal optimality and covariance matrix estimators. Ph.D. thesis, ETH, Zürich.
[36] Sun, D. and Sun, X. (2005). Estimation of the multivariate normal precision and covariance matrices in a star-shape model. Ann. Inst. Statist. Math. 57 455-484. · Zbl 1095.62070 · doi:10.1007/BF02509235
[37] Uhler, C. (2012). Geometry of maximum likelihood estimation in Gaussian graphical models. Ann. Statist. 40 238-261. · Zbl 1246.62140 · doi:10.1214/11-AOS957
[38] Vogel, D. and Fried, R. (2011). Elliptical graphical modelling. Biometrika 98 935-951. · Zbl 1228.62069 · doi:10.1093/biomet/asr037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.