×

Regularity for solutions of non local parabolic equations. (English) Zbl 1292.35068

The authors show the regularity of solutions of parabolic fully nonlinear nonlocal equations. Their results are natural extension of Krylov-Safonov techniques. The main results of this paper are proofs of the Hölder regularity (in space and time) for the solutions and, only in space, for the gradient of the solutions for translation-invariant equations. The proofs are based on a weak parabolic version of the Aleksandrov-Bakelman-Pucci-Krylov-Tso theorem. The authors extend the techniques introduced by Tso getting stable estimates when the singularity of the kernel tends to \(n +2\). This stability result is new and very interesting.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35K55 Nonlinear parabolic equations
35B45 A priori estimates in context of PDEs
35D40 Viscosity solutions to PDEs
35R09 Integro-partial differential equations

References:

[1] Aleksandrov, A. D.: Majorization of solutions of second-order linear equations. Vestnik Leningrad Univ. 21:5-25 (1966) (English translation in AMS Transl. (2) 68:120-143 (1968)) · Zbl 0177.36803
[2] Bakelman I.Y.: Theory of quasilinear equations. Sib. Math. J. 2, 179-186 (1961) · Zbl 0100.30503
[3] Barles G., Imbert C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567-585 (2008) · Zbl 1155.45004 · doi:10.1016/j.anihpc.2007.02.007
[4] Bass R.F., Kassmann M.: Hölder continuity of harmonic functions with respect to operators of variable order. Commmun. Partial Diff. Equ. 30(7-9), 1249-1259 (2005) · Zbl 1087.45004 · doi:10.1080/03605300500257677
[5] Bass R.F., Kassmann M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357(2), 837-850 (2005) · Zbl 1052.60060 · doi:10.1090/S0002-9947-04-03549-4
[6] Bass R.F., Levin D.A.: Harnack inequalities for jump processes. Potential Anal. 17(4), 375-388 (2002) · Zbl 0997.60089 · doi:10.1023/A:1016378210944
[7] Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43, vi+104 pp. American Mathematical Society, Providence, RI (1995) · Zbl 0834.35002
[8] Caffarelli, L., Chan, C., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3):849-869, 45P05 (2011) · Zbl 1223.35098
[9] Caffarelli L., Silvestre L.: Regularity theory for fully nonlinear integro differential equations. Commun. Pure Appl. Math. 62((5)), 597-638 (2009) · Zbl 1170.45006 · doi:10.1002/cpa.20274
[10] Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. arXiv: 0902.4030v2 · Zbl 1231.35284
[11] Crandall M., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[12] Evans, L. C.: Partial differential equations, 2nd edn. Graduate Studies in Mathematics, vol. 19, xxii+749 pp. American Mathematical Society, Providence, RI (2010). ISBN: 978-0-8218-4974-3 · Zbl 1194.35001
[13] Felsingerm, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. arXiv:1203.2942v1 · Zbl 1155.45004
[14] Guillen N., Schwab R.: Aleksandrov-Bakelman-Pucci Type Estimates for Integro-differential Equations. Arch. Ration. Mech. Anal. 206(1), 111-157 (2012) · Zbl 1256.35190 · doi:10.1007/s00205-012-0529-0
[15] Kassmann, M., Mimica, A.: Analysis of jump processes with nondegenerate jumping kernels. arXiv:1203.2126 (2012) · Zbl 1259.60100
[16] Krylov N.V.: Sequences of convex functions and estimates of the maximum of the solutions of a parabolic equation. Sib. Math. J. 17, 226-236 (1976) · Zbl 0362.35038 · doi:10.1007/BF00967569
[17] Krylov N.V., Safonov M.V.: An estimate on the probability that a diffusion process hits a set of positive measure. Dokl. Akad. Nauk SSSR 245(1), 18-20 (1979) · Zbl 0459.60067
[18] Krylov, N.V., Safonov, M.V.: A property of the solutions of parabolic equations with measurable coefficients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44(1):161-175, 239 (1980) · Zbl 1087.45004
[19] Pucci C.: Limitazioni per soluzioni di equazions ellittiche. Ann. Mat. Pura Appl. Ser. IV 74, 15-30 (1966) · Zbl 0144.35801 · doi:10.1007/BF02416445
[20] Silvestre L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155-1174 (2006) · Zbl 1101.45004 · doi:10.1512/iumj.2006.55.2706
[21] Silvestre L.: On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion. Adv. Math. 226(2), 2020-2039 (2011) · Zbl 1216.35165 · doi:10.1016/j.aim.2010.09.007
[22] Tso K.: On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations. Commun. Partial Diff. Equ. 10(5), 543-553 (1985) · Zbl 0581.35027 · doi:10.1080/03605308508820388
[23] Wang L.: On the regularity theory of fully nonlinear parabolic equations. I. Commun. Pure Appl. Math. 45(1), 27-76 (1992) · Zbl 0832.35025 · doi:10.1002/cpa.3160450103
[24] Wheeden, R., Zygmund, A.: Measure and integral: An introduction to real analysis. Pure and Applied Mathematics, vol.43. x274 pp. Marcel Dekker,Inc., New York-Basel (1977) · Zbl 0362.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.