×

Species doublers as super multiplets in lattice supersymmetry: exact supersymmetry with interactions for \(D = 1\) \(N = 2\). (English) Zbl 1291.81280

Summary: We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional \(N = 2\) model with interactions has exact Lie algebraic supersymmetry on the lattice for all super charges.{ }In coordinate representation the finite difference operator is made to satisfy Leibniz rule by introducing a non local product, the “star” product, and the exact lattice supersymmetry is realized. The standard momentum conservation is replaced on the lattice by the conservation of the sine of the momentum, which plays a crucial role in the formulation. Half lattice spacing structure is essential for the one dimensional model and the lattice supersymmetry transformation can be identified as a half lattice spacing translation combined with alternating sign structure. Invariance under finite translations and locality in the continuum limit are explicitly investigated and shown to be recovered. Supersymmetric Ward identities are shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry algebra of this model suggests a close connection with Hopf algebraic exactness of the link approach formulation of lattice supersymmetry.

MSC:

81T25 Quantum field theory on lattices
81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
16T05 Hopf algebras and their applications

References:

[1] H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory, Nucl. Phys.B 185 (1981) 20 [SPIRES]. · doi:10.1016/0550-3213(81)90361-8
[2] L.H. Karsten and J. Smit, Lattice Fermions: Species Doubling, Chiral Invariance and the Triangle Anomaly, Nucl. Phys.B 183 (1981) 103 [SPIRES]. · doi:10.1016/0550-3213(81)90549-6
[3] N. Kawamoto and J. Smit, Effective Lagrangian and Dynamical Symmetry Breaking in Strongly Coupled Lattice QCD, Nucl. Phys.B 192 (1981) 100 [SPIRES]. · doi:10.1016/0550-3213(81)90196-6
[4] J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev.D 11 (1975) 395 [SPIRES].
[5] L. Susskind, Lattice Fermions, Phys. Rev.D 16 (1977) 3031 [SPIRES].
[6] H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, Flavors of Lagrangian Susskind Fermions, Nucl. Phys.B 220 (1983) 447 [SPIRES]. · doi:10.1016/0550-3213(83)90501-1
[7] F. Gliozzi, Spinor algebra of the one component lattice fermions, Nucl. Phys.B 204 (1982) 419 [SPIRES]. · doi:10.1016/0550-3213(82)90199-7
[8] I. Kanamori and N. Kawamoto, Dirac-Kähler fermion from Clifford product with noncommutative differential form on a lattice, Int. J. Mod. Phys.A 19 (2004) 695 [hep-th/0305094] [SPIRES]. · Zbl 1080.81535
[9] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Twisted N = 2 exact SUSY on the lattice for BF and Wess-Zumino, Nucl. Phys. Proc. Suppl.140 (2005) 754 [hep-lat/0409092] [SPIRES]. · doi:10.1016/j.nuclphysbps.2004.11.249
[10] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Exact extended supersymmetry on a lattice: Twisted N = 2 super Yang-Mills in two dimensions, Phys. Lett.B 633 (2006) 645 [hep-lat/0507029] [SPIRES]. · Zbl 1247.81464
[11] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Exact Extended Supersymmetry on a Lattice: Twisted N = 4 Super Yang-Mills in Three Dimensions, Nucl. Phys.B 798 (2008) 168 [arXiv:0707.3533] [SPIRES]. · Zbl 1234.81103
[12] N. Kawamoto and T. Tsukioka, N = 2 supersymmetric model with Dirac-Kähler fermions from generalized gauge theory in two dimensions, Phys. Rev.D 61 (2000) 105009 [hep-th/9905222] [SPIRES].
[13] J. Kato, N. Kawamoto and Y. Uchida, Twisted superspace for N = D =2 super BF and Yang-Mills with Dirac-Kähler fermion mechanism, Int. J. Mod. Phys.A 19 (2004) 2149 [hep-th/0310242] [SPIRES]. · Zbl 1080.81064
[14] J. Kato, N. Kawamoto and A. Miyake, N = 4 twisted superspace from Dirac-Kähler twist and off-shell SUSY invariant actions in four dimensions, Nucl. Phys.B 721 (2005) 229 [hep-th/0502119] [SPIRES]. · Zbl 1128.81326 · doi:10.1016/j.nuclphysb.2005.05.024
[15] E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys.B 188 (1981) 513 [SPIRES]. · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[16] S. Catterall and E. Gregory, A lattice path integral for supersymmetric quantum mechanics, Phys. Lett.B 487 (2000) 349 [hep-lat/0006013] [SPIRES]. · Zbl 0989.81526
[17] S. Catterall and E. Gregory, A lattice path integral for supersymmetric quantum mechanics, Phys. Lett.B 487 (2000) 349 [hep-lat/0006013] [SPIRES]. · Zbl 0989.81526
[18] S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept.484 (2009) 71 [arXiv:0903.4881] [SPIRES]. · doi:10.1016/j.physrep.2009.09.001
[19] I. Kanamori, H. Suzuki and F. Sugino, Euclidean lattice simulation for the dynamical supersymmetry breaking, Phys. Rev.D 77 (2008) 091502 [arXiv:0711.2099] [SPIRES].
[20] I. Kanamori, A Method for Measuring the Witten Index Using Lattice Simulation, arXiv:1006.2468 [SPIRES]. · Zbl 1207.81031
[21] F. Cooper and B. Freedman, Aspects of Supersymmetric Quantum Mechanics, Ann. Phys.146 (1983) 262 [SPIRES]. · doi:10.1016/0003-4916(83)90034-9
[22] F. Bruckmann and M. de Kok, Noncommutativity approach to supersymmetry on the lattice: SUSY quantum mechanics and an inconsistency, Phys. Rev.D 73 (2006) 074511 [hep-lat/0603003] [SPIRES].
[23] S. Arianos, A. D’Adda, A. Feo, N. Kawamoto and J. Saito, Matrix formulation of superspace on 1D lattice with two supercharges, Int. J. Mod. Phys.A 24 (2009) 4737 [arXiv:0806.0686] [SPIRES]. · Zbl 1179.81121
[24] P.H. Dondi and H. Nicolai, Lattice Supersymmetry, Nuovo Cim.A 41 (1977) 1 [SPIRES]. · doi:10.1007/BF02730448
[25] A. Feo, Supersymmetry on the lattice, Nucl. Phys. Proc. Suppl.119 (2003) 198 [hep-lat/0210015] [SPIRES]. · Zbl 1097.81747 · doi:10.1016/S0920-5632(03)01507-X
[26] M. Hanada, J. Nishimura and S. Takeuchi, Non-lattice simulation for supersymmetric gauge theories in one dimension, Phys. Rev. Lett.99 (2007) 161602 [arXiv:0706.1647] [SPIRES]. · doi:10.1103/PhysRevLett.99.161602
[27] D. Kadoh and H. Suzuki, Supersymmetric nonperturbative formulation of the WZ model in lower dimensions, Phys. Lett.B 684 (2010) 167 [arXiv:0909.3686] [SPIRES].
[28] G. Bergner, Complete supersymmetry on the lattice and a No-Go theorem: A simulation with intact supersymmetries on the lattice, JHEP01 (2010) 024 [arXiv:0909.4791] [SPIRES]. · Zbl 1269.81081 · doi:10.1007/JHEP01(2010)024
[29] M. Kato, M. Sakamoto and H. So, Taming the Leibniz Rule on the Lattice, JHEP05 (2008) 057 [arXiv:0803.3121] [SPIRES]. · doi:10.1088/1126-6708/2008/05/057
[30] F. Bruckmann, S. Catterall and M. de Kok, A critique of the link approach to exact lattice supersymmetry, Phys. Rev.D 75 (2007) 045016 [hep-lat/0611001] [SPIRES].
[31] P.H. Damgaard and S. Matsuura, Lattice Supersymmetry: Equivalence between the Link Approach and Orbifolding, JHEP09 (2007) 097 [arXiv:0708.4129] [SPIRES]. · doi:10.1088/1126-6708/2007/09/097
[32] P.H. Damgaard and S. Matsuura, Geometry of Orbifolded Supersymmetric Lattice Gauge Theories, Phys. Lett.B 661 (2008) 52 [arXiv:0801.2936] [SPIRES]. · Zbl 1246.81179
[33] D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP05 (2003) 037 [hep-lat/0206019] [SPIRES]. · doi:10.1088/1126-6708/2003/05/037
[34] A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean spacetime lattice. I: A target theory with four supercharges, JHEP08 (2003) 024 [hep-lat/0302017] [SPIRES]. · doi:10.1088/1126-6708/2003/08/024
[35] A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean spacetime lattice. II: Target theories with eight supercharges, JHEP12 (2003) 031 [hep-lat/0307012] [SPIRES]. · doi:10.1088/1126-6708/2003/12/031
[36] S. Catterall, A geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP11 (2004) 006 [hep-lat/0410052] [SPIRES]. · doi:10.1088/1126-6708/2004/11/006
[37] F. Sugino, A lattice formulation of super Yang-Mills theories with exact supersymmetry, JHEP01 (2004) 015 [hep-lat/0311021] [SPIRES]. · Zbl 1243.81125 · doi:10.1088/1126-6708/2004/01/015
[38] M. Hanada, S. Matsuura and F. Sugino, Two-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-Mills, arXiv:1004.5513 [SPIRES]. · Zbl 1248.81140
[39] A. D’Adda, N. Kawamoto and J. Saito, Formulation of Supersymmetry on a Lattice as a Representation of a Deformed Superalgebra, Phys. Rev.D 81 (2010) 065001 [arXiv:0907.4137] [SPIRES].
[40] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Twisted superspace on a lattice, Nucl. Phys.B 707 (2005) 100 [hep-lat/0406029] [SPIRES]. · Zbl 1160.81464 · doi:10.1016/j.nuclphysb.2004.11.046
[41] A. D’Adda, A. Feo, I. Kanamori, N. Kawamoto and J. Saito, Lattice Supersymmetry: Some Ideas from Low Dimensional Models, PoS(LAT2009)051 [arXiv:0910.2924] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.