×

Vacua and RG flows in \(N = 9\) three dimensional gauged supergravity. (English) Zbl 1291.81236

Summary: We study some vacua of \(N = 9\) three dimensional gauged supergravity. The theory contains sixteen scalar fields parametrizing the exceptional coset space \(\frac{F_{4( - 20)}}{\text{SO}(9)}\). Various supersymmetric and some non-supersymmetric AdS\({}_{3}\) vacua are found in both compact and non-compact gaugings with gauge groups SO(\(p\)) {\(\times\)} SO(9 - \(p\)) for \(p\) = 0, 1, 2, 3, 4, \(G_{2(-14)}\) {\(\times\)} SL(2) and Sp(1, 2) {\(\times\)} SU(2). We also study many RG flow solutions, both analytic and numerical, interpolating between supersymmetric AdS\({}_{3}\) critical points in this theory. All the flows considered here are driven by a relevant operator of dimension \(\Delta = \frac{3}{2}\). This operator breaks conformal symmetry as well as supersymmetry and drives the CFT in the UV to another CFT in the IR with lower supersymmetries.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81V17 Gravitational interaction in quantum theory
83E50 Supergravity
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory

Software:

Mathematica

References:

[1] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett.86 (2001) 1686 [hep-th/0010076] [SPIRES]. · doi:10.1103/PhysRevLett.86.1686
[2] H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions, JHEP04 (2001) 022 [hep-th/0103032] [SPIRES]. · doi:10.1088/1126-6708/2001/04/022
[3] T. Fischbacher, H. Nicolai and H. Samtleben, Non-semisimple and complex gaugings of N = 16 supergravity, Commun. Math. Phys.249 (2004) 475 [hep-th/0306276] [SPIRES]. · Zbl 1062.83086 · doi:10.1007/s00220-004-1081-z
[4] H. Nicolai and H. Samtleben, N = 8 matter coupled AdS3supergravities, Phys. Lett.B 514 (2001) 165 [hep-th/0106153] [SPIRES]. · Zbl 0969.83548
[5] B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys.B 671 (2003) 175 [hep-th/0307006] [SPIRES]. · Zbl 1058.81070
[6] B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys.B 392 (1993) 3 [hep-th/9208074] [SPIRES]. · doi:10.1016/0550-3213(93)90195-U
[7] T. Fischbacher, Some stationary points of gauged N = 16 D = 3 supergravity, Nucl. Phys.B 638 (2002) 207 [hep-th/0201030] [SPIRES]. · Zbl 0997.83092 · doi:10.1016/S0550-3213(02)00485-6
[8] T. Fischbacher, H. Nicolai and H. Samtleben, Vacua of maximal gauged D = 3 supergravities, Class. Quant. Grav.19 (2002) 5297 [hep-th/0207206] [SPIRES]. · Zbl 1011.83036 · doi:10.1088/0264-9381/19/21/302
[9] E. Gava, P. Karndumri and K.S. Narain, AdS3vacua and RG flows in three dimensional gauged supergravities, JHEP04 (2010) 117 [arXiv:1002.3760] [SPIRES]. · Zbl 1272.83082 · doi:10.1007/JHEP04(2010)117
[10] M. Berg and H. Samtleben, An exact holographic RG flow between 2d conformal fixed points, JHEP05 (2002) 006 [hep-th/0112154] [SPIRES]. · doi:10.1088/1126-6708/2002/05/006
[11] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [SPIRES]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[12] N.S. Deger, Renormalization group flows from D = 3, N = 2 matter coupled gauged supergravities, JHEP11 (2002) 025 [hep-th/0209188] [SPIRES]. · doi:10.1088/1126-6708/2002/11/025
[13] H. Nishino and S. Rajpoot, Topological gauging of N = 16 supergravity in three-dimensions, Phys. Rev.D 67 (2003) 025009 [hep-th/0209106] [SPIRES].
[14] F. Bernardoni, S.L. Cacciatori, B.L. Cerchiai and A. Scotti, Mapping the geometry of the F4group, Adv. Theor. Math. Phys.12 (2008) 889 [arXiv:0705.3978] [SPIRES]. · Zbl 1145.22300
[15] S.L. Cacciatori and B.L. Cerchiai, Exceptional groups, symmetric spaces and applications, arXiv:0906.0121 [SPIRES].
[16] S. Wolfram, The Mathematica Book, 5th ed., Wolfram Media (2003).
[17] E.S. Fradkin and V.Y. Linetsky, Results of the classification of superconformal algebras in two-dimensions, Phys. Lett.B 282 (1992) 352 [hep-th/9203045] [SPIRES]. · Zbl 0968.81521
[18] N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett.B 128 (1983) 169 [SPIRES].
[19] W. Mueck, Correlation functions in holographic renormalization group flows, Nucl. Phys.B 620 (2002) 477 [hep-th/0105270] [SPIRES]. · Zbl 0988.81081 · doi:10.1016/S0550-3213(01)00502-8
[20] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [SPIRES]. · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[21] S.L. Cacciatori, B.L. Cerchiai, A. Della Vedova, G. Ortenzi and A. Scotti, Euler angles for G2, J. Math. Phys.46 (2005) 083512 [hep-th/0503106] [SPIRES]. · Zbl 1110.81094 · doi:10.1063/1.1993549
[22] M. Günaydin and S.V. Ketov, Seven-sphere and the exceptional N = 7 and N = 8 superconformal algebras, Nucl. Phys.B 467 (1996) 215 [hep-th/9601072] [SPIRES]. · Zbl 1002.81507 · doi:10.1016/0550-3213(96)00088-0
[23] H. Nicolai and H. Samtleben, Chern-Simons vs. Yang-Mills gaugings in three dimensions, Nucl. Phys.B 668 (2003) 167 [hep-th/0303213] [SPIRES]. · Zbl 1031.81043 · doi:10.1016/S0550-3213(03)00569-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.