×

Optimal sample size allocation for multi-level stress testing with Weibull regression under type-II censoring. (English) Zbl 1291.62183

Summary: We discuss the optimal allocation problem in a multi-level stress test with Type-II censoring and Weibull (extreme value) regression model. We derive the maximum-likelihood estimators and their asymptotic variance-covariance matrix through the Fisher information. Four optimality criteria are used to discuss the optimal allocation problem. Optimal allocation of units, both exactly for small sample sizes and asymptotically for large sample sizes, for two- and four-stress-level situations are determined numerically. Conclusions and discussions are provided based on the numerical studies.

MSC:

62N05 Reliability and life testing
62N01 Censored data models
Full Text: DOI

References:

[1] Cox D. R., J. Roy. Stat. Soc. B 26 pp 103– (1964)
[2] DOI: 10.2307/2528247 · doi:10.2307/2528247
[3] DOI: 10.2307/2283983 · doi:10.2307/2283983
[4] DOI: 10.1093/biomet/60.2.279 · Zbl 0267.62010 · doi:10.1093/biomet/60.2.279
[5] DOI: 10.1002/9781118032985 · doi:10.1002/9781118032985
[6] DOI: 10.1002/0471725234 · doi:10.1002/0471725234
[7] Meeker W. Q., Statistical Methods for Reliability Data (1998) · Zbl 0949.62086
[8] Zhou, Q. J. 2002. ”Inferential methods for extreme value regression models”. Hamilton, Ontario, Canada: McMaster University. Ph.D. thesis
[9] Porter A., Accelerated Testing and Validation (2004)
[10] DOI: 10.2307/1268710 · Zbl 0391.62074 · doi:10.2307/1268710
[11] DOI: 10.2307/1267923 · Zbl 0318.62081 · doi:10.2307/1267923
[12] DOI: 10.1002/nav.20207 · Zbl 1128.62113 · doi:10.1002/nav.20207
[13] Silvey S. D., Optimal Design (1980)
[14] DOI: 10.1016/0951-8320(91)90036-7 · Zbl 0725.62091 · doi:10.1016/0951-8320(91)90036-7
[15] DOI: 10.1109/24.159807 · Zbl 0749.62063 · doi:10.1109/24.159807
[16] DOI: 10.1002/1520-6750(199303)40:2<193::AID-NAV3220400205>3.0.CO;2-J · Zbl 0765.62091 · doi:10.1002/1520-6750(199303)40:2<193::AID-NAV3220400205>3.0.CO;2-J
[17] DOI: 10.1080/03052159908941375 · doi:10.1080/03052159908941375
[18] DOI: 10.1109/TR.2005.847247 · doi:10.1109/TR.2005.847247
[19] DOI: 10.1109/TR.2005.853289 · doi:10.1109/TR.2005.853289
[20] DOI: 10.1080/03610918708812595 · Zbl 0621.62033 · doi:10.1080/03610918708812595
[21] DOI: 10.1109/24.210277 · Zbl 0800.62603 · doi:10.1109/24.210277
[22] DOI: 10.1016/S0167-9473(96)00090-4 · Zbl 0900.62286 · doi:10.1016/S0167-9473(96)00090-4
[23] Paul S. R., Sankhyā Ser. B 58 pp 28– (1996)
[24] Burden R. L., Numerical Analysis (1997)
[25] DOI: 10.1002/0471722227 · Zbl 1088.62020 · doi:10.1002/0471722227
[26] DOI: 10.1137/1.9780898719062 · Zbl 1172.62017 · doi:10.1137/1.9780898719062
[27] Abramowitz M., Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (1972) · Zbl 0543.33001
[28] Chan, P. S. 1993. ”A statistical study of log-gamma distribution”. Canada: McMaster University. Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.