×

A generalized telegraph process with velocity driven by random trials. (English) Zbl 1291.60182

This interesting paper deals with a one-dimensional telegraph-type random motion where the velocities are randomly chosen at the occurences of the governing process. The additional randomness is supposed to be either Bernoulli or Pólya. In the first case the new velocity is independent of the previous evolution while in the second case a memory of the past motion is introduced. The intertimes between events changing the velocity of motion are independent, absolutely continuous, positive random variables. Within this generalized context the authors are able to obtain the probability laws of motions and in some specific cases also in a closed form. Fine results are provided in all cases considered but expecially for the Bernoulli case.

MSC:

60K15 Markov renewal processes, semi-Markov processes
60K37 Processes in random environments

References:

[1] Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables . Dover, New York. · Zbl 0171.38503
[2] Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour, XIII-1983 (Lecture Notes Math. 1117 ), Springer, Berlin, pp. 1-198. · Zbl 0562.60042
[3] Aletti, G., May, C. and Secchi, P. (2009). A central limit theorem, and related results, for a two-color randomly reinforced urn. Adv. Appl. Prob. 41 , 829-844. · Zbl 1176.60013 · doi:10.1239/aap/1253281065
[4] Bartlett, M. S. (1957). Some problems associated with random velocity. Publ. Inst. Statist. Univ. Paris. 6 , 261-270. · Zbl 0089.34603
[5] Beghin, L., Nieddu, L. and Orsingher, E. (2001). Probabilistic analysis of the telegrapher’s process with drift by means of relativistic transformations. J. Appl. Math. Stoch. Anal. 14 , 11-25. · Zbl 0986.60096 · doi:10.1155/S104895330100003X
[6] Berti, P., Pratelli, L. and Rigo, P. (2004). Limit theorems for a class of identically distributed random variables. Ann. Prob. 32 , 2029-2052. · Zbl 1050.60004 · doi:10.1214/009117904000000676
[7] Berti, P., Crimaldi, I., Pratelli, L. and Rigo, P. (2011). A central limit theorem and its applications to multicolor randomly reinforced urns. J. Appl. Prob. 48 , 527-546. · Zbl 1225.60038 · doi:10.1239/jap/1308662642
[8] Brown, M. (2011). Detection of changes of multiple Poisson processes monitored at discrete time points where the arrival rates are unknown. Sequent. Anal. 30 , 280-296. · Zbl 1223.62143 · doi:10.1080/07474946.2011.593918
[9] Cohen, A. and Sackrowitz, H. B. (1993). Evaluating tests for increasing intensity of a Poisson process. Technometrics 35 , 446-448. · Zbl 0792.62073 · doi:10.2307/1270277
[10] Crimaldi, I. (2009). An almost sure conditional convergence result and an application to a generalized Pólya urn. Internat. Math. Forum 4 , 1139-1156. · Zbl 1196.60046
[11] De Gregorio, A. (2010). Stochastic velocity motions and processes with random time. Adv. Appl. Prob. 42 , 1028-1056. · Zbl 1218.60085 · doi:10.1239/aap/1293113150
[12] De Gregorio, A. (2012). On random flights with non-uniformly distributed directions. J. Statist. Phys. 147 , 382-411. · Zbl 1243.82031 · doi:10.1007/s10955-012-0471-4
[13] De Gregorio, A. and Orsingher, E. (2012). Flying randomly in \(\mathbb {R}^d\) with Dirichlet displacements. Stoch. Process. Appl. 122 , 676-713. · Zbl 1244.60090
[14] Di Crescenzo, A. (2001). On random motions with velocities alternating at Erlang-distributed random times. Adv. Appl. Prob. 33 , 690-701. · Zbl 0990.60094 · doi:10.1239/aap/1005091360
[15] Di Crescenzo, A. and Martinucci, B. (2007). Random motion with gamma-distributed alternating velocities in biological modeling. In Computer Aided Systems Theory, EUROCAST 2007 (Lecture Notes Comput. Sci. 4739 ), eds R. Moreno-Díaz et al. , Springer, Berlin, pp. 163-170.
[16] Di Crescenzo, A. and Martinucci, B. (2009). On a first-passage-time problem for the compound power-law process. Stoch. Models 25 , 420-435. · Zbl 1172.60318 · doi:10.1080/15326340903088768
[17] Di Crescenzo, A. and Martinucci, B. (2010). A damped telegraph random process with logistic stationary distribution. J. Appl. Prob. 47 , 84-96. · Zbl 1197.60084 · doi:10.1239/jap/1269610818
[18] Di Crescenzo, A., Martinucci, B. and Zacks, S. (2011). On the damped geometric telegrapher’s process. In Mathematical and Statistical Methods for Actuarial Sciences and Finance , eds C. Perna and M. Sibillo, Springer, Dordrecht, pp. 175-182. · Zbl 1238.91068
[19] Foong, S. K. and Kanno, S. (1994). Properties of the telegrapher’s random process with or without a trap. Stoch. Process. Appl. 53 , 147-173. · Zbl 0807.60070 · doi:10.1016/0304-4149(94)90061-2
[20] Goldstein, S. (1951). On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math. 4 , 129-156. · Zbl 0045.08102 · doi:10.1093/qjmam/4.2.129
[21] Gradshteyn, I. S. and Ryzhik, I. M. (2007). Tables of Integrals, Series, and Products , 7th edn. Academic Press, Amsterdam. · Zbl 1208.65001
[22] Iacus, S. M. (2001). Statistical analysis of the inhomogeneous telegrapher’s process. Statist. Prob. Lett. 55 , 83-88. · Zbl 0999.62065 · doi:10.1016/S0167-7152(01)00133-X
[23] Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mount. J. Math. 4 , 497-509. · Zbl 0314.60052 · doi:10.1216/RMJ-1974-4-3-497
[24] Mahmoud, H. M. (2008). Pólya Urn Models . Chapman & Hall/CRC. · Zbl 1149.60005
[25] Moschopoulos, P. G. (1985). The distribution of the sum of independent gamma random variables. Ann. Inst. Statist. Math. 37 , 541-544. · Zbl 0587.60015 · doi:10.1007/BF02481123
[26] Orsingher, E. (1990). Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws. Stoch. Process. Appl. 34 , 49-66. · Zbl 0693.60070 · doi:10.1016/0304-4149(90)90056-X
[27] Orsingher, E. (1995). Motions with reflecting and absorbing barriers driven by the telegraph equation. Random Operators Stoch. Equat. 1 , 9-21. · Zbl 0822.60073 · doi:10.1515/rose.1995.3.1.9
[28] Pinsky, M. A. (1991). Lectures on Random Evolutions . World Scientific, River Edge, NJ. · Zbl 0925.60139
[29] Pólya, G. (1931). Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 , 117-161. · JFM 57.0610.02
[30] Serino, C. A. and Redner, S. (2010). The Pearson walk with shrinking steps in two dimensions. J. Statist. Mech. Theory Exp. 2010 , P01006, 12pp.
[31] Stadje, W. and Zacks, S. (2004). Telegraph processes with random velocities. J. Appl. Prob. 41 , 665-678. · Zbl 1080.60072 · doi:10.1239/jap/1091543417
[32] Wolff, R. W. (1989). Stochastic Modeling and the Theory of Queues . Prentice Hall, Englewood Cliffs, NJ. · Zbl 0701.60083
[33] Zacks, S. (2004). Generalized integrated telegraph processes and the distribution of related stopping times. J. Appl. Prob. 41 , 497-507. · Zbl 1052.60085 · doi:10.1239/jap/1082999081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.