×

Lower bounds for the constants in the Bohnenblust-Hille inequality: the case of real scalars. (English) Zbl 1291.46040

The multilinear Bohnenblust-Hille inequality (for real scalars) states that for all \(m\), there exists a constant \(C_{m}\geq 0\) such that, for every positive integer \(N\) and every \(m\)-linear mapping \(T:\ell _{\infty }^{N}\times \dots \times \ell _{\infty }^{N}\rightarrow \mathbb{R}\), \[ \left( \sum_{i_{1},\dots,i_{m}=1}^{N}\left| T\left( e_{i_{1}},\dots,e_{i_{m}}\right) \right| ^{\frac{2m}{m+1}}\right) ^{\frac{ m+1}{2m}}\leq C_{m}\left| T\right| . \] The case \(m=2\) is the well-known Littlewood \(4/3\) inequality [J.E.Littlewood, Q.J.Math., Oxf.Ser.1, 164–174 (1930; JFM 56.0335.01)].
Since its publication in 1931, several authors have obtained upper estimates for the values of \(C_{m}\). It is clear that \(C_{m}\geq 1\), but no better lower bound seemed to be known for general \(m\) until now.
In this paper, the aim of the authors is to give a nontrivial lower bound for \(C_{m}\). The tool is a clever and nice induction argument, in which the definition \[ \max \{a,b\}:=\frac{\left| a+b\right| +\left| a-b\right| }{2} \] is advantageously applied, in order to give the lower bound for the Bohnenblust-Hille constant \[ C_{m}\geq 2^{\frac{m-1}{m}}. \] This estimate has an extra bonus, because in the case \(m = 2\) the optimal constant \(C_2\) in the Littlewood \(4/3\) inequality is obtained.

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
47H60 Multilinear and polynomial operators

Citations:

JFM 56.0335.01

References:

[1] S. Aaronson and A. Ambainis, The Need for Structure in Quantum Speedups, Electronic Colloquium on Computational Complexity 110 (2009). · Zbl 1298.81045
[2] H. F. Bohnenblust and Einar Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), no. 3, 600 – 622. · Zbl 0001.26901 · doi:10.2307/1968255
[3] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. (2) 7 (1973), 31 – 40. · Zbl 0264.46055 · doi:10.1112/jlms/s2-7.1.31
[4] Andreas Defant, Leonhard Frerick, Joaquim Ortega-Cerdà, Myriam Ounaïes, and Kristian Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), no. 1, 485 – 497. · Zbl 1235.32001 · doi:10.4007/annals.2011.174.1.13
[5] Andreas Defant, Dumitru Popa, and Ursula Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct. Anal. 259 (2010), no. 1, 220 – 242. · Zbl 1205.46026 · doi:10.1016/j.jfa.2010.01.008
[6] Andreas Defant and Pablo Sevilla-Peris, A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal. 256 (2009), no. 5, 1642 – 1664. · Zbl 1171.46034 · doi:10.1016/j.jfa.2008.07.005
[7] D. Diniz, G. A. Muñoz-Fernández, D. Pellegrino, and J. B. Seoane-Sepúlveda, The asymptotic growth of the constants in the Bohnenblust-Hille inequality is optimal, J. Funct. Anal. 263 (2012), no. 2, 415 – 428. · Zbl 1252.46034 · doi:10.1016/j.jfa.2012.04.014
[8] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva, and M. M. Wolf, Unbounded violations of bipartite Bell inequalities via operator space theory, Comm. Math. Phys. 300 (2010), no. 3, 715 – 739. · Zbl 1211.46068 · doi:10.1007/s00220-010-1125-5
[9] Sten Kaijser, Some results in the metric theory of tensor products, Studia Math. 63 (1978), no. 2, 157 – 170. · Zbl 0392.46047
[10] J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math. 1 (1930), 164-174. · JFM 56.0335.01
[11] G. A. Muñoz-Fernández, D. Pellegrino, and J. B. Seoane-Sepúlveda, Estimates for the asymptotic behaviour of the constants in the Bohnenblust-Hille inequality, Linear Multilinear Algebra 60 (2012), no. 5, 573 – 582. · Zbl 1252.46035 · doi:10.1080/03081087.2011.613833
[12] Daniel Pellegrino and Juan B. Seoane-Sepúlveda, New upper bounds for the constants in the Bohnenblust-Hille inequality, J. Math. Anal. Appl. 386 (2012), no. 1, 300 – 307. · Zbl 1234.26061 · doi:10.1016/j.jmaa.2011.08.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.