×

Non-real eigenvalues of indefinite Sturm-Liouville problems. (English) Zbl 1291.34052

Consider the regular indefinite Sturm-Liouville problem \[ -(py')' + q y = \lambda w y\text{ on }[0,1] \] with separated boundary conditions and with real coefficients \(w, q, 1/p \in L^1[0,1]\) satisfying \(p(x) > 0, \, w(x) \neq 0\) a.e. If the weight function \(w\) changes its sign then the theory of definitizable operators in Krein spaces implies a relation between the number \(n\) of negative eigenvalues of the corresponding definite problem (with \(w\) replaced by \(|w|\)) and the number (\(\leq 2n\)) of non-real eigenvalues of the original problem. The present paper presents a refinement of this result improving some earlier estimates. In particular, two statements on a priori bounds for (the real and imaginary parts of) the non-real eigenvalues are obtained, involving the coefficients and the boundary conditions: one estimate assuming certain smoothness conditions on the weight function \(w\) and the other estimate assuming \(p=1\) and only a single sign change of \(w\). Furthermore, two existence statements are obtained, using the so-called eigencurve method: sufficient conditions for the existence of exactly \(2\) non-real eigenvalues and also for its complete absence (even if above we have \(n > 0\)).

MSC:

34B24 Sturm-Liouville theory
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34B09 Boundary eigenvalue problems for ordinary differential equations
47B50 Linear operators on spaces with an indefinite metric
Full Text: DOI

References:

[1] Atkinson, F. V.; Jabon, D., Indefinite Sturm-Liouville problems, (Kaper, H. G.; Kwong, M. K.; Zettle, A., Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems, vol. I (1988), Argonne National Lab.: Argonne National Lab. Lemont, IL, USA), 31-45
[2] Behrndt, J.; Philipp, F.; Trunk, C., Bounds on the non-real spectrum of differential operators with indefinite weights (2012)
[3] Behrndt, J.; Katatbeh, Q.; Trunk, C., Non-real eigenvalues of singular indefinite Sturm-Liouville operators, Proc. Amer. Math. Soc., 137, 3797-3806 (2009) · Zbl 1182.47036
[4] Binding, P.; Browne, P. J., Applications of two parameter spectral theory to symmetric generalised eigenvalue problems, Appl. Anal., 29, 107-142 (1988) · Zbl 0683.47011
[5] Binding, P.; Volkmer, H., Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev., 38, 27-48 (1996) · Zbl 0869.34020
[6] Čurgus, B.; Langer, H., A Krein space approach to symmetric ordinary differential operators with an indefinite weight functions, J. Differential Equations, 79, 31-61 (1989) · Zbl 0693.34020
[7] Fleckinger, J.; Mingarelli, A. B., On the eigenfunctions of non-definite elliptic operators, (Knowles, I. W.; Lewis, R. T., Differential Equations (1964), North-Holland: North-Holland The Netherlands) · Zbl 0559.35055
[8] Haupt, O., Über eine Methode zum Beweis von oszillations Theoremen, Math. Ann., 76, 67-104 (1915) · JFM 45.0494.01
[9] Mingarelli, A. B., Indefinite Sturm-Liouville problems, (Lecture Notes in Math., vol. 964 (1982), Springer: Springer Berlin, New York), 519-528 · Zbl 0503.34016
[10] Mingarelli, A. B., A survey of the regular weighted Sturm-Liouville problem - The non-definite case (June 2011)
[11] Qi, J.; Chen, S., A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems, J. Spectr. Theory (2013), in press
[12] Richardson, R. G.D., Theorems of oscillation for two linear differential equations of second order with two parameters, Trans. Amer. Math. Soc., 13, 22-34 (1912) · JFM 43.0400.03
[13] Richardson, R. G.D., Contributions to the study of oscillatory properties of the solutions of linear differential equations of the second order, Amer. J. Math., 40, 283-316 (1918)
[14] Zettl, A., Sturm-Liouville Theory, Math. Surveys Monogr., vol. 121 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1074.34030
[15] Turyn, L., Sturm-Liouville problems with several parameters, J. Differential Equations, 38, 239-259 (1980) · Zbl 0421.34023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.