×

Commutative algebras in Fibonacci categories. (English) Zbl 1291.18010

Summary: By studying NIM-representations we show that the Fibonacci category and its tensor powers are completely anisotropic; that is, they do not have any non-trivial separable commutative ribbon algebras. As an application, we deduce that a chiral algebra with the representation category equivalent to a product of Fibonacci categories is maximal; that is, it is not a proper subalgebra of another chiral algebra. In particular the chiral algebras of the Yang-Lee model, the WZW models of \(G_{2}\) and \(F_{4}\) at level 1, as well as their tensor powers, are maximal.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
17B69 Vertex operators; vertex operator algebras and related structures
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Bakalov, B.; Kirillov, A., Lectures on Tensor Categories and Modular Functors, Univ. Lecture Ser., vol. 21 (2001), American Mathematical Society: American Mathematical Society Providence, RI, 221 pp · Zbl 0965.18002
[2] Belavin, A.; Polyakov, A.; Zamolodchikov, A., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 2, 333-380 (1984) · Zbl 0661.17013
[3] Davydov, A.; Müger, M.; Nikshych, D.; Ostrik, V., The Witt group of non-degenerate braided fusion categories · Zbl 1271.18008
[4] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory, Grad. Texts Contemp. Phys. (1997), Springer-Verlag: Springer-Verlag New York, 890 pp · Zbl 0869.53052
[5] Dong, C.; Li, H.; Mason, G., Modular invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys., 214, 1, 1-56 (2000) · Zbl 1061.17025
[6] Drinfeld, V.; Gelaki, S.; Nikshych, D.; Ostrik, V., On braided fusion categories I, Selecta Math. (N.S.), 16, 1, 1-119 (2010) · Zbl 1201.18005
[7] Frenkel, I.; Zhu, Y., Vertex operator algebras associated to affine and Virasoro algebras, Duke Math. J., 66, 1, 123-168 (1992) · Zbl 0848.17032
[8] Fuchs, J.; Ganchev, A.; Vecsernyes, P., Rational Hopf algebras: polynomial equations, gauge fixing, and low-dimensional examples, Internat. J. Modern Phys. A, 10, 24, 3431-3476 (1995) · Zbl 1044.81628
[9] Fuchs, J.; Schellekens, A. N.; Schweigert, C., A matrix \(S\) for all simple current extensions, Nucl. Phys. B, 473, 1-2, 323-366 (1996) · Zbl 0921.17014
[10] Huang, Y.-Z., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10, Suppl. 1, 871-911 (2008) · Zbl 1169.17019
[11] Janelidze, G.; Kelly, G. M., A note on actions of a monoidal category, Theory Appl. Categ., 9, 61-91 (2001/2) · Zbl 1009.18005
[12] Joyal, A.; Street, R., Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra, 71, 1, 43-51 (1991) · Zbl 0726.18004
[13] Joyal, A.; Street, R., Braided tensor categories, Adv. Math., 102, 1, 20-78 (1993) · Zbl 0817.18007
[14] Kirillov, A.; Ostrik, V., On \(q\)-analog of McKay correspondence and ADE classification of \(\hat{sl}_2\) conformal field theories, Adv. Math., 171, 2, 183-227 (2002) · Zbl 1024.17013
[15] McCrudden, P., Categories of representations of coalgebroids, Adv. Math., 154, 2, 299-332 (2000) · Zbl 0968.18004
[16] Milas, A., Tensor product of vertex operator algebras
[17] Moore, G.; Seiberg, N., Classical and quantum conformal field theory, Comm. Math. Phys., 123, 2, 177-254 (1989) · Zbl 0694.53074
[18] Moore, G.; Seiberg, N., Lectures on RCFT, (Superstrings 89. Superstrings 89, Trieste, 1989 (1990), World Sci. Publ.), 1-129 · Zbl 0985.81739
[19] Müger, M., From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra, 180, 1-2, 159-219 (2003) · Zbl 1033.18003
[20] Müger, M., On the structure of modular categories, Proc. Lond. Math. Soc., 87, 2, 291-308 (2003) · Zbl 1037.18005
[21] Ostrik, V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 2, 177-206 (2003) · Zbl 1044.18004
[22] Ostrik, V., Fusion categories of rank 2, Math. Res. Lett., 10, 2-3, 177-183 (2003) · Zbl 1040.18003
[23] Pareigis, B., On braiding and dyslexia, J. Algebra, 171, 2, 413-425 (1995) · Zbl 0816.18003
[24] Quillen, D., Higher algebraic \(K\)-theory. I, (Algebraic \(K\)-theory, I: Higher \(K\)-theories. Algebraic \(K\)-theory, I: Higher \(K\)-theories, Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972. Algebraic \(K\)-theory, I: Higher \(K\)-theories. Algebraic \(K\)-theory, I: Higher \(K\)-theories, Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972, Lecture Notes in Math., vol. 341 (1973)), 85-147 · Zbl 0292.18004
[25] Schellekens, A., Meromorphic \(c = 24\) conformal field theories, Comm. Math. Phys., 153, 1, 159-185 (1993) · Zbl 0782.17014
[26] Turaev, V., Quantum Invariants of Knots and 3-Manifolds, de Gruyter Stud. Math., vol. 18 (1994), Walter de Gruyter: Walter de Gruyter Berlin, 588 pp · Zbl 0812.57003
[27] Wang, W., Rationality of Virasoro vertex operator algebras, Int. Math. Res. Not. IMRN, 71, 7, 197-211 (1993) · Zbl 0791.17029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.