×

Periodic modules over Gorenstein local rings. (English) Zbl 1291.13020

Let \(R\) be a commutative Noetherian ring. For an \(R\)-module \(M\), let \(\Omega_R(M)\) denotes the kernal of an onto homomorphism of \(R\)-modules \(P \rightarrow M\), with \(P\), a finitely generated projective \(R\)-module. \(\Omega_R(M)\) can be determined from \(M\), up to a projective summand. Define \(\Omega_R^d(M) := \Omega_R(\Omega_R^{d-1}(M))\) for any \(d \geq 1\). Over a local ring \((R,\mathfrak{m})\), an \(R\)-module \(M\) is said to be periodic if there exists \(n \in \mathbb{N}\) such that \(M \cong \Omega_R^n(M)\) and \(M\) is said to be eventually periodic if there exists an \(n \in \mathbb{N}\) and a non-negative integer \(\ell\), such that \(\Omega_R^{\ell}(M) \cong \Omega_R^{n+\ell}(M)\). In the paper under review, the author proves a structure theorem for \(J(R)\), the Grothendieck module of \(R\) (definition 2.1), when \(R\) is a Gorenstein local ring with the Krull-Remak-Schmidt property (Theorem 4.2). As a consequence, over a Gorenstein local ring \(R\) with the Krull-Remak-Schmidt property, that an \(R\)-module is eventually periodic if and only if its class in \(J(R)\) is annihilated by some non-zero element of \(\mathbb{Z}[t^{\pm 1}]\) and that \(R\) has a periodic module if and only if \(J(R)\) has non-zero torsion.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)

References:

[1] Avramov, L. L., Problems on infinite free resolutions, (Free Resolutions in Commutative Algebra and Algebraic Geometry. Free Resolutions in Commutative Algebra and Algebraic Geometry, Sundance, UT, 1990. Free Resolutions in Commutative Algebra and Algebraic Geometry. Free Resolutions in Commutative Algebra and Algebraic Geometry, Sundance, UT, 1990, Res. Notes Math., vol. 2 (1992), Jones and Bartlett: Jones and Bartlett Boston), 3-23 · Zbl 0778.13010
[2] Bass, H.; Murthy, M. P., Grothendieck groups and Picard groups of abelian group rings, Ann. Math., 86, 16-73 (1967) · Zbl 0157.08202
[3] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Stud. Adv. Math., vol. 39 (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0909.13005
[4] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc., 260, 1, 35-64 (1980) · Zbl 0444.13006
[5] Enochs, E.; Jenda, O. M.G., Relative Homological Algebra, de Gruyter Exp. Math., vol. 30 (2000), de Gruyter: de Gruyter Berlin · Zbl 0952.13001
[6] Gasharov, V.; Peeva, I., Boundedness versus periodicity over commutative local rings, Trans. Amer. Math. Soc., 320, 569-580 (1990) · Zbl 0706.13020
[7] Gulliksen, T. H., A proof of the existence of minimal R-algebra resolutions, Acta Math., 120, 53-58 (1968) · Zbl 0157.34603
[8] Herzog, J., Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann., 233, 21-34 (1978) · Zbl 0358.13009
[9] Huneke, C.; Jorgensen, D.; Wiegand, R., Vanishing theorems for complete intersections, J. Algebra, 238, 684-702 (2001) · Zbl 1082.13504
[10] Ischebeck, F., Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra, 11, 510-531 (1969) · Zbl 0191.01306
[11] Jordan, D. R., A Grothendieck module with applications to Poincaré rationality, J. Pure Appl. Algebra, 214, 616-621 (2010) · Zbl 1184.13040
[12] Kaplansky, I., Commutative Rings (1974), University of Chicago Press: University of Chicago Press Chicago · Zbl 0203.34601
[13] Lang, S., Algebra, Grad. Texts in Math., vol. 211 (2002), Springer: Springer New York · Zbl 0984.00001
[14] Leuschke, G.; Wiegand, R., Cohen-Macaulay Representations, Math. Surveys Monogr., vol. 181 (2012), American Mathematical Society: American Mathematical Society Providence · Zbl 1252.13001
[15] Vasconcelos, W., Reflexive modules over Gorenstein rings, Proc. Amer. Math. Soc., 19, 1349-1355 (1968) · Zbl 0167.31201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.