×

A unified mode decomposition method for physical fields in homogeneous cosmology. (English) Zbl 1290.83001

Summary: The methods of mode decomposition and Fourier analysis of classical and quantum fields on curved spacetimes previously available mainly for the scalar field on Friedman-Robertson-Walker (FRW) spacetimes are extended to arbitrary vector bundle fields on general spatially homogeneous spacetimes. This is done by developing a rigorous unified framework which incorporates mode decomposition, harmonic analysis and Fourier analysis. The limits of applicability and uniqueness of mode decomposition by separation of the time variable in the field equation are found. It is shown how mode decomposition can be naturally extended to weak solutions of the field equation under some analytical assumptions. It is further shown that these assumptions can always be fulfilled if the vector bundle under consideration is analytic. The propagator of the field equation is explicitly mode decomposed. A short survey on the geometry of the models considered in mathematical cosmology is given and it is concluded that practically all of them can be represented by a semidirect homogeneous vector bundle. Abstract harmonic analytical Fourier transform is introduced in semidirect homogeneous spaces and it is explained how it can be related to the spectral Fourier transform. The general form of invariant bi-distributions on semidirect homogeneous spaces is found in the Fourier space which generalizes earlier results for the homogeneous states of the scalar field on FRW spacetimes.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83F05 Relativistic cosmology
81T20 Quantum field theory on curved space or space-time backgrounds
43A85 Harmonic analysis on homogeneous spaces

References:

[1] DOI: 10.1063/1.3271106 · Zbl 1309.83093 · doi:10.1063/1.3271106
[2] DOI: 10.1103/PhysRev.183.1057 · Zbl 0186.58603 · doi:10.1103/PhysRev.183.1057
[3] DOI: 10.1017/CBO9781139172073 · doi:10.1017/CBO9781139172073
[4] DOI: 10.1063/1.1602554 · Zbl 1062.81115 · doi:10.1063/1.1602554
[5] DOI: 10.1007/BF02102088 · Zbl 0749.46045 · doi:10.1007/BF02102088
[6] Gelfand I., Generalized Functions, Vol. 4: Applications of Harmonic Analysis (1964)
[7] DOI: 10.4171/037 · doi:10.4171/037
[8] DOI: 10.1007/s00220-005-1346-1 · Zbl 1081.53059 · doi:10.1007/s00220-005-1346-1
[9] Günther P., Perspectives in Mathematics, in: Huygens’ Principle and Hyperbolic Equations (1988) · Zbl 0655.35003
[10] DOI: 10.1007/BF01269921 · Zbl 0455.58030 · doi:10.1007/BF01269921
[11] DOI: 10.1142/S0129055X92000078 · Zbl 0760.53049 · doi:10.1142/S0129055X92000078
[12] Cycon H. L., Theoretical and Mathematical Physics, in: Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry (2008)
[13] Maurin K., Bull. Amer. Math. Soc. 78 pp 15–
[14] Maurin K., General Eigenfunction Expansions and Unitary Representations of Topological Groups (1968) · Zbl 0185.39001
[15] DOI: 10.1090/S0002-9947-1975-0385067-1 · doi:10.1090/S0002-9947-1975-0385067-1
[16] Herold H., Studia Mathematica: Skript, in: Differentialgleichungen im Komplexen (1975)
[17] Dieudonne J., Treatise on Analysis (1976)
[18] DOI: 10.1016/j.shpsb.2004.05.002 · Zbl 1222.83197 · doi:10.1016/j.shpsb.2004.05.002
[19] Petrov A., Izvestiia Visshikh Uchebnikh Zavedeniy, Matematika 6 pp 118–
[20] DOI: 10.1017/CBO9780511535185 · doi:10.1017/CBO9780511535185
[21] DOI: 10.1016/0370-1573(90)90120-Q · doi:10.1016/0370-1573(90)90120-Q
[22] Helgason S., Pure and Applied Mathematics 80, in: Differential Geometry, Lie Groups, and Symmetric Spaces (1979) · Zbl 0451.53038
[23] Folland G. B., Studies in Advanced Mathematics 2, in: Course in Abstract Harmonic Analysis (1995) · Zbl 0857.43001
[24] Gelfand I., Generalized Functions: Fundamental and Generalized Function 2 (1968)
[25] Hebey E., Courant Lecture Notes in Mathematics 5, in: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities (1999) · Zbl 0981.58006
[26] Taylor M., Pseudodifferential Operators and Nonlinear Partial Differential Equations (1991)
[27] DOI: 10.1007/3-7643-7698-8 · doi:10.1007/3-7643-7698-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.