×

Quantum ergodicity for a class of mixed systems. (English) Zbl 1290.81037

Summary: We examine high energy eigenfunctions for the Dirichlet Laplacian on domains where the billiard flow exhibits mixed dynamical behavior. (More generally, we consider semiclassical Schrödinger operators with mixed assumptions on the Hamiltonian flow.) Specifically, we assume that the billiard flow has an invariant ergodic component, \(U\), and study defect measures, \(\mu\), of positive density subsequences of eigenfunctions (and, more generally, of almost orthogonal quasimodes). We show that any defect measure associated to such a subsequence satisfies \(\mu|_{U}=c\mu_L|_{U}\), where \(\mu_L\) is the Liouville measure. This proves part of a conjecture of C. Percival [“Regular and irregular spectra”, J. Phys. B At. Mol. Phys. 6, No. 9, 229–232 (1973; doi:10.1088/0022-3700/6/9/002)].

MSC:

81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] N. Anantharaman and G. Riviére. Dispersion and controllability for the Schrödinger equation on negatively curved manifolds Anal. PDE 5 (2012), 313-338. · Zbl 1267.35176 · doi:10.2140/apde.2012.5.313
[2] A. H. Barnett and T. Betcke, Quantum mushroom billiards. Chaos 17 (2007), Article Id. 043125. · Zbl 1163.37310 · doi:10.1063/1.2816946
[3] L. A. Bunimovich, Mushrooms and other billiards with divided phase space. Chaos 11 (2001), 802-808. · Zbl 1080.37582 · doi:10.1063/1.1418763
[4] H. Christianson, Quantum monodromy and nonconcentration near a closed semi- hyperbolic orbit. Trans. Amer. Math. Soc. 363 (2011), 3373-3438. · Zbl 1230.58020 · doi:10.1090/S0002-9947-2011-05321-3
[5] Y. Colin de Verdiére, Ergodicité et fonctions propres du laplacien. Comm. Math. Phys. 102 (1985), 497-502. · Zbl 0592.58050 · doi:10.1007/BF01209296
[6] S. Dyatlov and M. Zworski, Quantum ergodicity for restrictions to hypersurfaces. Non- linearity 26 (2013), 35-52. · Zbl 1278.81100 · doi:10.1088/0951-7715/26/1/35
[7] P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet prob- lem. Duke Math. J. 71 (1993), 559-607. · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0
[8] A. Hassell, Ergodic billiards that are not quantum unique ergodic. With an appendix by the author and L. Hillairet. Ann. of Math. (2) 171 (2010), 605-619. · Zbl 1196.58014 · doi:10.4007/annals.2010.171.605
[9] B.Hellfer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique. Comm. Math. Phys. 109 (1987), 313-326. · Zbl 0624.58039 · doi:10.1007/BF01215225
[10] L. Hörmander, The analysis of linear partial differential operators. III. Pseudo- differential operators. Grundlehren der Mathematischen Wissenschaften 274. Springer Verlag, Berlin, 1985. Reprint, Classics in Mathematics. Springer Verlag, Berlin, 2007. · Zbl 0601.35001
[11] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an addendum by A. I. Shnirelman. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 24. Springer Verlag, Berlin etc., 1993. · Zbl 0814.58001
[12] J. Marklof. Quantum Leaks. Comm. Math. Phys. 264 (2006), 303-316. · Zbl 1233.58004 · doi:10.1007/s00220-005-1467-6
[13] J. Marklof and S. O’Keefe. Weyl’s law and quantum ergodicity for maps with divided phase space. With an appendix “Converse quantum ergodicity” by Steve Zelditch. Non- linearity 18 (2005), 277-304. · Zbl 1109.81037 · doi:10.1088/0951-7715/18/1/015
[14] J. Marklof and Z. Rudnick, Almost all eigenfunctions of a rational polygon are uniformly distributed. J. Spectr. Theory 2 (2012), 107-113. · Zbl 1242.37027 · doi:10.4171/JST/23
[15] B. T. Nguyen and D. S. Grebenkov. Localization of Laplacian eigenfunctions in circular, spherical and elliptical domains. SIAM J. Appl. Math. 73 (2013), 780-803. · Zbl 1432.35153
[16] F. W. J. Olver, The asymptotic expansion of Bessel functions of large order. Philos. Trans. Roy. Soc. London. Ser. A. 247 (1954), 328-368. · Zbl 0070.30801 · doi:10.1098/rsta.1954.0020
[17] G. Riviére, Remarks on quantum ergodicity. J. Mod. Dyn. 7 (2013), 119-133. · Zbl 1348.58019
[18] I. C. Percival, Regular and irregular spectra. J. Phys. B: At. Mol. Phys. 6 (1973), L229-232.
[19] A. Shnirelmann, Ergodic properties of eigenfuncions. Usp. Math. Nauk. 29 (1974), 181-182.
[20] S. Zelditch, Note on quantum unique ergodicity. Proc. Amer. Math. Soc. 132 (2004), 1869-1872. · Zbl 1055.58016 · doi:10.1090/S0002-9939-03-07298-8
[21] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55 (1987) 919-941. · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[22] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys. 175 (1996), 673-682. · Zbl 0840.58048 · doi:10.1007/BF02099513
[23] M. Zworski, Semiclassical analysis. Graduate Studies in Mathematics 138. American Mathematical Society, Providence, RI, 2012. · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.