×

Exploring quadrangulations. (English) Zbl 1288.68232


MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
90C05 Linear programming
90C10 Integer programming
68W25 Approximation algorithms

References:

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3, 485–493. · doi:10.1145/882262.882296
[2] M. Berkelaar, K. Eikland, and P. Notebaert. 2004. Ipsolve: Open source (mixed-integer) linear programming system. http://lpsolve.sourceforge.net/5.5/
[3] M. Bessmeltsev, C. Wang, A. Sheffer, and K. Singh. 2012. Design-driven quadrangulation of closed 3d curves. ACM Trans. Graph. 31, 5. · doi:10.1145/2366145.2366197
[4] T. D. Blacker And M. B. Stephenson. 1991. Paving: A new approach to automated quadrilateral mesh generation. Int. J. Numer. Methods Engin. 32, 4, 811–847. · Zbl 0755.65111 · doi:10.1002/nme.1620320410
[5] D. Bommes, B. Levy, N. Pietroni, E. Puppo, M. Tarini, and D. Zorin. 2012. State of the art in quad meshing. In EuroGraphics STARS.
[6] D. Bommes, H. Zimmer, and L. Kobbelt. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77.
[7] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. 2010. Polygon Mesh Processing. A. K. Peters, Natick, MA. · doi:10.1201/b10688
[8] D. Cohen-Steiner, P. Alliez, and M. Desbrun. 2004. Variational shape approximation. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’04). ACM Press, New York, 905–914.
[9] J. Daniels, C. T. Silva, J. Shepherd, and E. Cohen. 2008. Quadrilateral mesh simplification. ACM Trans. Graph. 27, 5, 148:1–148:9.
[10] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057–1066. · doi:10.1145/1141911.1141993
[11] S. Dong, S. Kircher, and M. Garland. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput.-Aid. Geom. Des. 22, 392–423. · Zbl 1205.65116 · doi:10.1016/j.cagd.2005.04.004
[12] F. Kalberer, M. Nieser, and K. Polthier. 2007. Quadcover – Surface parameterization using branched coverings. Comput. Graph. Forum 26, 3, 375–384. · Zbl 1259.65025 · doi:10.1111/j.1467-8659.2007.01060.x
[13] B. Levy, S. Petitjean, N. Ray, and J. Maillot. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362–371. · doi:10.1145/566654.566590
[14] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 3, 681–689. · doi:10.1145/1141911.1141941
[15] M. Marinov and L. Kobbelt. 2004. Direct anisotropic quad-dominant remeshing. In Proceedings of the 12<sup>th</sup> Pacific Conference on Computer Graphics and Applications (PG’04). 207–216.
[16] M. Marinov and L. Kobbelt. 2006. A robust two-step procedure for quad-dominant remeshing. Comput. Graph. Forum 25, 3, 537–546. · doi:10.1111/j.1467-8659.2006.00973.x
[17] S. Maza, F. Noel, and J. Leon. 1999. Generation of quadrilateral meshes on free-form surfaces. Comput. Struct. 71.
[18] A. S. M. Nasri and Z. Yasseen. 2009. Filling n-sided regions by quad meshes for subdivision surfaces. Comput. Graph. Forum 28, 1644–1658. · doi:10.1111/j.1467-8659.2009.01417.x
[19] J. Palacios and E. Zhang. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55.
[20] C. Park, J.-S. Noh, I.-S. Jang, and J. M. Kang. 2007. A new automated scheme of quadrilateral mesh generation for randomly distributed line constraints. Comput.-Aid. Des. 39, 4, 258–267. · doi:10.1016/j.cad.2006.12.002
[21] C.-H. Peng, E. Zhang, Y. Kobayashi, and P. Wonka. 2011. Connectivity editing for quadrilateral meshes. ACM Trans. Graph. 30, 6, 141.
[22] N. Ray, W. C. Li, B. Levy, A. Sheffer, and P. Alliez. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485. · doi:10.1145/1183287.1183297
[23] N. Ray, B. Vallet, L. Alsonso, and B. Levy. 2009. Geometry aware direction field design. ACM Trans. Graph. 29, 1, 1:1–1:11.
[24] N. Ray, B. Vallet, W. C. Li, and B. Levy. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2, 10:1–10:13.
[25] S. Schaefer, J. Warren, and D. Zorin. 2004. Lofting curve networks using subdivision surfaces. In Proceedings of the 2<sup>nd</sup> EuroGraphics Symposium on Geometry Processing (SGP’04). 103–114.
[26] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. 2006. Designing quadrangulations with discrete harmonic forms. In Proceedings of the 4<sup>th</sup> EuroGraphics Symposium on Geometry Processing (SGP’06). 201–210.
[27] D. White and P. Kinney. 1997. Redesign of the paving algorithm: Robustness enhancements through element by element meshing. In Proceedings of the 6<sup>th</sup> International Meshing Round Table. 323–335.
[28] Y.-L. Yang, Y.-J. Yang, H. Pottmann, and N. J. Mitra. 2011. Shape space exploration of constrained meshes. ACM Trans. Graph. 30, 6, 124:1–124:12.
[29] E. Zhang, K. Mischaikow, and G. Turk. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 1294–1326. · doi:10.1145/1183287.1183290
[30] M. Zhang, J. Huang, X. Liu, And H. Bao. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 4, 118:1–118:8.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.