×

Transient \(L^1\) error estimates for well-balanced schemes on non-resonant scalar balance laws. (English) Zbl 1288.65131

The paper deals with the numerical approximation of the non-resonant balance law \[ \partial_t u+\partial_x f(u)=k(x)g(u),\quad u(0,x)=u_0(x), \] under the assumption \(\pm f^{\prime}(u) \geq \nu>0\).
The authors discuss the qualitative difference between time-splitting and well-balanced difference schemes and give the estimates showing the exponential error growth in time for the first ones and the linear growth for the second ones. The theoretical considerations are confirmed by the numerical experiments.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI

References:

[1] Amadori, D.; Gosse, L.; Guerra, G., Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal., 162, 327-366 (2002) · Zbl 1024.35066
[2] Amadori, D.; Gosse, L.; Guerra, G., Godunov-type approximation for a general resonant balance law with large data, J. Differential Equations, 198, 233-274 (2004) · Zbl 1058.35156
[3] Bouchut, F.; Perthame, B., Kružkovʼs estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350, 7, 2847-2870 (1998) · Zbl 0955.65069
[4] Bressan, A., Hyperbolic Systems of Conservation Laws - The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20 (2000), Oxford University Press: Oxford University Press Oxford · Zbl 0997.35002
[5] Cockburn, B., Continuous dependence and error estimation for viscosity methods, Acta Numer., 12, 127-180 (2003) · Zbl 1048.65090
[7] Dafermos, C. M., Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38, 33-41 (1972) · Zbl 0233.35014
[8] E, W., Homogenization of scalar conservation laws with oscillatory forcing terms, SIAM J. Appl. Math., 52, 959-972 (1992) · Zbl 0755.35068
[9] Gallouet, T.; Hérard, J.-M.; Hurisse, O.; LeRoux, A.-Y., Well-balanced schemes versus fractional step method for hyperbolic systems with source terms, Calcolo, 43, 217-251 (2006) · Zbl 1117.65120
[10] Gosse, L., A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws, C. R. Math. Acad. Sci. Paris, Sér. I, 327, 467-472 (1998) · Zbl 0909.65059
[11] Gosse, L., Localization effects and measure source terms in numerical schemes for balance laws, Math. Comp., 71, 553-582 (2002) · Zbl 0997.65108
[12] Gosse, L., Time-splitting schemes and measure source terms for a quasilinear relaxing system, Math. Models Methods Appl. Sci., 13, 8, 1081-1101 (2003) · Zbl 1053.35086
[13] Gosse, L., Maxwellian decay for well-balanced approximations of a super-characteristic chemotaxis model, SIAM J. Sci. Comput., 34, A520-A545 (2012) · Zbl 1387.65086
[14] Gosse, L.; Toscani, G., Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., 41, 641-658 (2003) · Zbl 1130.82340
[15] Greenberg, J.; LeRoux, A.-Y., A well balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1-16 (1996) · Zbl 0876.65064
[16] Guerra, G., Well-posedness for a scalar conservation law with singular nonconservative source, J. Differential Equations, 206, 438-469 (2004) · Zbl 1072.35118
[17] Ha, Y.; Kim, Y. J., Explicit solutions to a convection-reaction equation and defects of numerical schemes, J. Comput. Phys., 220, 511-531 (2006) · Zbl 1120.65094
[18] Helzel, C.; LeVeque, R. J.; Warnecke, G., A modified fractional step method for the accurate approximation of detonation waves, SIAM J. Sci. Comput., 22, 1489-1510 (2000) · Zbl 0983.65105
[19] Holden, H.; Karlsen, K. H.; Lie, K.-A.; Risebro, N. H., Splitting Methods for Partial Differential Equations with Rough Solutions. Analysis and MATLAB Programs, EMS Ser. Lect. Math. (2010), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1191.35005
[20] Holden, H.; Risebro, N. H., Front Tracking for Hyperbolic Conservation Laws, Appl. Math. Sci., vol. 152 (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1006.35002
[21] Isaacson, E.; Temple, B., Convergence of the \(2 \times 2\) Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55, 625-640 (1995) · Zbl 0838.35075
[22] Jin, S.; Kim, Y. J., On the computation of roll waves, Math. Model. Anal., 35, 463-480 (2001) · Zbl 1001.35084
[23] Karlsen, K. H.; Risebro, N. H.; Towers, J. D., Front tracking for scalar balance equations, J. Hyperbolic Differ. Equ., 1, 115-148 (2004) · Zbl 1053.35088
[24] Katsoulakis, M. A.; Kossioris, G.; Makridakis, Ch., Convergence and error estimates of relaxation schemes for multidimensional conservation laws, Comm. Partial Differential Equations, 24, 3-4, 395-424 (1999) · Zbl 0926.35088
[25] Klingenstein, P., Hyperbolic conservation laws with source terms: Errors of the shock location (1994), ETH: ETH Zürich, Research report 94-07
[26] Klingenberg, C.; Risebro, N. H., Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior, Comm. Partial Differential Equations, 20, 11-12, 1959-1990 (1995) · Zbl 0836.35090
[27] Kružkov, S. N., First order quasilinear equations in several independent space variables, Math. USSR Sb., 81, 228-255 (1970) · Zbl 0202.11203
[28] Kuznetsov, N. N., Accuracy of some approximate methods for computing the weak solutions of a first-order quasilinear equation, Zh. Vychisl. Mat. Mat. Fiz.. Zh. Vychisl. Mat. Mat. Fiz., USSR Comput. Math. Math. Phys., 16, 105-119 (1976), English transl. in · Zbl 0381.35015
[29] Langseth, J. O.; Tveito, A.; Winther, R., On the convergence of operator splitting applied to conservation laws with source terms, SIAM J. Numer. Anal., 33, 843-863 (1996) · Zbl 0866.65059
[30] Layton, W. J., Error estimates for finite difference approximations to hyperbolic equations for large time, Proc. Amer. Math. Soc., 92, 425-431 (1984) · Zbl 0558.65071
[31] LeFloch, Ph.; Tzavaras, A. E., Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., 30, 1309-1342 (1999) · Zbl 0939.35115
[32] Le Roux, A.-Y., A Numerical conception of entropy for quasi-linear equations, Math. Comp., 31, 848-872 (1977) · Zbl 0378.65053
[33] LeVeque, R. J.; Temple, B., Stability of Godunovʼs method for a class of \(2 \times 2\) systems of conservation laws, Trans. Amer. Math. Soc., 288, 115-123 (1985) · Zbl 0561.65067
[34] LeVeque, R. J.; Yee, H. C., A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys., 86, 187-210 (1990) · Zbl 0682.76053
[35] Liu, T.-P.; Yang, T., A new entropy functional for a scalar conservation law, Comm. Pure Appl. Math., 52, 1427-1442 (1999) · Zbl 0941.35051
[36] Lucier, B. J., Error bounds for the methods of Glimm, Godunov, and LeVeque, SIAM J. Numer. Anal., 22, 1074-1081 (1985) · Zbl 0584.65059
[37] Mascia, C.; Terracina, A., Long-time behavior for conservation laws with source in a bounded domain, J. Differential Equations, 159, 485-514 (1999) · Zbl 0943.35050
[38] Meng, X.; Shu, C.-W.; Zhang, Q.; Wu, B., Superconvergence of discontinuous Galerkin method for scalar nonlinear conservation laws in one space dimension, SIAM J. Numer. Anal., 50, 2336-2356 (2012) · Zbl 1267.65115
[39] Natalini, R.; Tesei, A., Blow-up of solutions for a class of balance laws, Commun. Partial Differ. Equ., 19, 417-453 (1994) · Zbl 0807.35088
[40] Nessyahu, H.; Tadmor, E.; Tassa, T., The convergence rate of Godunov type schemes, SIAM J. Numer. Anal., 31, 1-16 (1994) · Zbl 0799.65096
[41] Oran, Elaine S.; Boris, Jay P., Numerical Simulation of Reactive Flow (2005), Cambridge Univ. Press · Zbl 1092.76002
[42] Peyroutet, F., Splitting method applied to hyperbolic problem with source term, Appl. Math. Lett., 14, 99-104 (2001) · Zbl 0982.65094
[43] Sabac, F., The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws, SIAM J. Numer. Anal., 34, 2306-2318 (1997) · Zbl 0992.65099
[44] Tang, T.; Teng, Z.-H., The sharpness of Kuznetsovʼs \(O(\sqrt{\Delta x})L^1\)-error estimate for monotone difference schemes, Math. Comp., 64, 581-589 (1995) · Zbl 0845.65053
[45] Tang, T.; Teng, Z.-H., Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal., 32, 110-127 (1995) · Zbl 0860.65087
[46] Tadmor, E., Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43, 369-381 (1984) · Zbl 0587.65058
[47] Wang, W.-C., On \(L^1\) convergence rate of viscous and numerical approximate solutions of genuinely nonlinear scalar conservation laws, SIAM J. Math. Anal., 30, 38-52 (1998) · Zbl 0922.65068
[48] Wang, W.; Shu, C.-W.; Yee, H. C.; Sjögreen, B., High order finite difference methods with subcell resolution for advection equations with stiff source terms, J. Comput. Phys., 231, 1, 190-214 (2012) · Zbl 1457.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.