×

Trivializable sub-Riemannian structures on spheres. (English) Zbl 1288.53025

A manifold \((M, {\mathcal D}, g)\) is called a sub-Riemannian manifold if it has a distribution \({\mathcal D}\) which is bracket generating, that is, all linear combinations of vector fields of \(T{\mathcal D}\) of \(TM\) and a finite number of their Lie brackets span the tangent bundle \(TM\). Then the sub-Riemannian structure on \(M\) is called trivializable (briefly TSR) if \({\mathcal D}\) is spanned by a family of globally defined vector fields on \(M\). In this paper, the authors classify the TSR-structures on spheres \(S^7\) and \(S^{15}\) induced by a Clifford module structure of \(\mathbb R^8\) and \(\mathbb R^{16}\), respectively. Also, they show that TSR-structures only exist on \(S^N\) \((N = 3, 7, 15)\). The rest of the paper includes properties of such TSR-structures, followed by some open problems in this area.

MSC:

53C17 Sub-Riemannian geometry
35P20 Asymptotic distributions of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] Adams, J. F., Vector fields on spheres, Ann. of Math., 75, 603-632 (1962) · Zbl 0112.38102
[2] Atiyah, M. F.; Bott, R.; Shapiro, A., Clifford modules, Topology, 3, Suppl. I, 3-38 (1964) · Zbl 0146.19001
[3] Baudoin, F.; Wang, J., The subelliptic heat kernel on the CR sphere (2011)
[4] Bauer, W.; Furutani, K., Spectral zeta function of a sub-Laplacian on product sub-Riemannian manifolds and zeta-regularized determinant, J. Geom. Phys., 60, 1209-1234 (2009) · Zbl 1198.53032
[5] Bauer, W.; Furutani, K., Spectral analysis and geometry of a sub-Riemannian structure on \(S^3\) and \(S^7\), J. Geom. Phys., 58, 1693-1738 (2008) · Zbl 1218.58023
[6] Bauer, W.; Furutani, K., Quantization operators on quadrics, Kyushu J. Math., 62, 1, 221-258 (2008) · Zbl 1148.53068
[7] Bauer, W.; Furutani, K.; Iwasaki, C., Spectral zeta function of the sub-Laplacian on two step nilmanifolds, J. Math. Pures Appl. (9), 97, 3, 242-261 (2012) · Zbl 1238.58019
[8] Bauer, W.; Furutani, K.; Iwasaki, C., Spectral analysis and geometry of a sub-Laplacian and related Grushin type operators, (Partial Differential Equations and Spectral Theory. Partial Differential Equations and Spectral Theory, Oper. Theory Adv. Appl., vol. 211 (2011), Springer), 183-287 · Zbl 1307.58012
[9] Beals, R.; Gaveau, B.; Greiner, P., The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemannian complexes, Adv. Math., 121, 288-345 (1996) · Zbl 0858.43009
[10] Beals, R.; Gaveau, B.; Greiner, P., Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl., 79, 7, 633-689 (2000) · Zbl 0959.35035
[11] Calin, O.; Chang, D. C., Sub-Riemannian geometry on the sphere \(S^3\), Canad. J. Math., 61, 4, 721-739 (2009) · Zbl 1225.53032
[12] Chang, D. C.; Markina, I.; Vasiliev, A., Sub-Riemannian geodesics on the 3-D sphere, Complex Anal. Oper. Theory, 3, 2, 361-377 (2009) · Zbl 1176.53042
[13] Hörmander, L., Hypo-elliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701
[14] James, I. M., The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note Ser., vol. 24 (1977), Cambridge Univ. Press
[15] Kervaire, M. A., Courbure intégrale généralisée et homotopie, Math. Ann., 131, 219-252 (1956) · Zbl 0072.18202
[16] Lawson, H. B.; Michelson, M.-L., Spin Geometry (1989), Princeton Univ. Press · Zbl 0688.57001
[17] Markina, I.; Molina, M. G., Sub-Riemannian geodesics and heat operator on odd dimensional spheres, Anal. Math. Phys., 2, 2, 123-147 (2012) · Zbl 1279.53029
[18] Markina, I.; Molina, M. G., Sub-Riemannian geometry of parallelizable spheres, Rev. Mat. Iberoam., 27, 3, 997-1022 (2011) · Zbl 1228.53043
[19] Rawnsley, J. H., A non-unitary pairing of polarization for the Kepler problem, Trans. Amer. Math. Soc., 250, 167-180 (1979) · Zbl 0422.58019
[20] Stables, E. B., A short and elementary proof that a product of spheres is parallelizable if one of them is odd, Proc. Amer. Math. Soc., 18, 570-571 (1967) · Zbl 0153.25404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.