×

Wave equation driven by fractional generalized stochastic processes. (English) Zbl 1288.26006

The author uses the approach of fractional derivatives of generalized stochastic processes to solve equations driven by fractional derivatives of singular noises and initial data. The perturbation of the wave equation by fractional time and space derivatives of generalized processes are also examined using a Wiener process and a nonlinear term. It is shown that the solutions of the perturbed wave equation for \(n \leq 3\) belong to the extended Colombeau space \({\mathcal G}^{\Omega_ e}_{{\mathcal C_ k}}(\operatorname{Re}^ n), k\in N^{k}\), when the perturbed initial data and additive term are from \({\mathcal G}^{\Omega}(\operatorname{Re}^ n)\).

MSC:

26A33 Fractional derivatives and integrals
46F30 Generalized functions for nonlinear analysis (Rosinger, Colombeau, nonstandard, etc.)
60G20 Generalized stochastic processes
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Albeverio S., Haba Z., Russo F.: Trivial solutions for a nonlinear two space-dimensional wave equation perturbed by space-time white noise. Stoch. Stoch. Rep. 56, 127–160 (1996) · Zbl 0887.60069 · doi:10.1080/17442509608834039
[2] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2008. · Zbl 1157.60002
[3] H. A. Biagioni A Nonlinear Theory of Generalized Functions, Lecture Notes in Math. 1421, Berlin, Springer, 1990.
[4] Colombeau J. F.: Elementary Introduction to New Generalized Functions. North Holland, Amsterdam (1985) · Zbl 0584.46024
[5] Colombeau J. F.: Multiplication of distribuions. Bull. Amer. Math. Soc. 23, 251–268 (1990) · Zbl 0731.46023 · doi:10.1090/S0273-0979-1990-15919-1
[6] M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometric Generalized Functions with Applications to General Relativity, Mathematics and its Applications 537, Kluwer, 2001. · Zbl 0998.46015
[7] Guerra J., Nualart D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stochastic Anal. Appl. 26, 1053–1075 (2008) · Zbl 1151.60028 · doi:10.1080/07362990802286483
[8] H. Holden, B. Øksendal, J. Ubø and S. Zhang, Stochastic Partial Differential Equations, Birkhäuser-Verlag, Basel, 1996.
[9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland, Mathematical Studies 204, Edt. Jan van Mill, Elsevier, 2006. · Zbl 1092.45003
[10] Nedeljkov M., Oberguggenberger M., Pilipović S.: Generalized solutions to a semilinear wave equation. Nonlinear Anal. 61, 461–475 (2005) · Zbl 1078.35077 · doi:10.1016/j.na.2005.01.001
[11] M. Nedeljkov, S. Pilipović and D. Scarpalézos, The Linear Theory of Colombeau Generalized Functions, Pitman Res. Not. Math., Longman, Essex, 1998.
[12] M. Nedeljkov and D. Rajter, Nonlinear stochastic wave equation with Colombeau generalized stochastic processes, Math. Models Methods Appl. Sci. 12 (2002), no. 5, 665–688. · Zbl 1024.60027
[13] D. Nualart, Fractional Brownian motion : stochastic, calculus and applications, In: M. Sanz-Sole, J. L. Valona, J. Soria and J. Verdera (Eds.), Proc. I. C. Math., Madrid III (2006), 1541–1563. · Zbl 1102.60033
[14] Nualart D., Vuillermot P. A.: Variational solutions for partial differential equations driven by a fractional noise. J. Funct. Anal. 232, 390–454 (2006) · Zbl 1089.35097 · doi:10.1016/j.jfa.2005.06.015
[15] M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Res. Not. Math. 259, Longman Sci. Techn., Essex, 1992. · Zbl 0818.46036
[16] M. Oberguggenberger, Generalized functions and stochastic processes, In: E. Bolthausen, M. Dozzi and F. Russo (Eds.), Seminar on Stochastic Analysis, Random Fields and Applications. Birkhäuser-Verlag, Basel. Prog. Probab. 36 (1995), 215–229. · Zbl 0829.46025
[17] M. Oberguggenberger and F. Russo, Nonlinear stochastic wave equations, Integral Transforms Spec. Funct. 6 (1998), 1–4, 71–83. · Zbl 0912.60072
[18] M. Oberguggenberger, Colombeau solutions to nonlinear wave equations, ArXiv:math/0612445v1math.AP., 15 Dec 2006.
[19] Peszat S., Zabczyk J.: Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116, 421–443 (2000) · Zbl 0959.60044 · doi:10.1007/s004400050257
[20] S. Pilipović, Colombeau’s generalized functions and pseudo-differential operators, Lectures in Mathematical Sciences, The University of Tokyo, 1994.
[21] Pilipović S., Stojanović M.: Generalized solutions to nonlinear Volterra integral equations with non-Lipshitz’s nonlinearity. Nonlinear Anal. 37, 319–335 (1999) · Zbl 0931.45005 · doi:10.1016/S0362-546X(98)00050-9
[22] S. Pilipović and M. Stojanović, Volterra type integral equations with singularities, in: Nonlinear Algebraic Analysis and Applications, Proc. ICGF2000, Point a Pitre, Guadeloupe,(eds. Delcroix A., Hasler M., Marti J.A. and Valmorin V.), Cambridge Scientific Publishers, 2004.
[23] S. Peszats and J. Zabczyk, Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields 116 (2000), no. 3, 421–443.
[24] D. Rajter-Ćirić, Construction of Colombeau solutions to deterministic and stochastic differential equations, Uni. Novom Sadu, Faculty of Natural Science, (Ph.D. thesis), 2001, (in Serbian).
[25] D. Rajter-Ćirić and M. Stojanović, Convolution-type derivatives and transforms of Colombeau generalized stochastic processes, Integral Transforms Spec. Funct. 22 (2011), Issue 4 & 5, 319–326. · Zbl 1225.26011
[26] D.Rajter-Ćirić and M. Stojanović, Fractional derivatives of multidimensional Colombeau generalized stochastic processes, Preprint, 2010.
[27] F. Russo, Colombeau generalized functions and stochastic analysis. In: A. I. Cardoso, M. de Faria, J. Potthoff, R. Sénéor, L. Streit (Eds.), Analysis and Application in Physics, Kluwer, Dordrecht, 1994, 329–349.
[28] M. Stojanović, Extension of Colombeau algebra to derivatives of arbitrary order $${D\^{\(\backslash\)alpha}, {\(\backslash\)alpha} {\(\backslash\)in} {\(\backslash\)bar {\(\backslash\)mathbb{R}}_{+}}}$$ D {\(\alpha\)} , {\(\alpha\)} R \={} + . Application to ODEs and PDEs with entire and fractional derivatives, Nonlinear Anal. 71 (2009), no. 11, 5458–5475.
[29] M. Stojanović, Foundation of the fractional calculus in generalized functions algebra, Anal. Appl. (Singap.) 10 (2012), no. 4, 439–467. · Zbl 1254.26015
[30] Tatar N.: Fractionaly damped wave equation. J. Math. Anal. Appl. 295, 303–314 (2004) · Zbl 1052.35111 · doi:10.1016/j.jmaa.2004.01.047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.