×

The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow. (English) Zbl 1287.76153

Summary: Bubbly turbulent Taylor-Couette (TC) flow is globally and locally studied at Reynolds numbers of \(Re= 5\times 10^{5}\) to \(2\times 10^{6}\) with a stationary outer cylinder and a mean bubble diameter around 1 mm. We measure the drag reduction (DR) based on the global dimensional torque as a function of the global gas volume fraction \(\alpha_{global}\) over the range 0–4 %. We observe a moderate DR of up to 7% for \(Re= 5. 1\times 10^{5}\). Significantly stronger DR is achieved for \(Re= 1.0\times 10^{6}\) and \(2.0\times 10^{6}\) with, remarkably, more than 40% of DR at \(Re= 2.0\times 10^{6}\) and \(\alpha_{global} = 4\%\). To shed light on the two apparently different regimes of moderate DR and strong DR, we investigate the local liquid flow velocity and the local bubble statistics, in particular the radial gas concentration profiles and the bubble size distribution, for the two different cases: \(Re= 5.1\times 10^{5}\) in the moderate DR regime and \(\operatorname{Re}=1.0\times 10^{6}\) in the strong DR regime, both at \(\alpha_{global} = 3\pm 0.5\%\). In both cases the bubbles mostly accumulate close to the inner cylinder (IC). Surprisingly, the maximum local gas concentration near the IC for \(Re=1.0\times 10^{6}\) is \(\approx\)2.3 times lower than that for \(Re=5.1\times 10^{5}\), in spite of the stronger DR. Evidently, a higher local gas concentration near the inner wall does not guarantee a larger DR. By defining and measuring a local bubble Weber number \((We)\) in the TC gap close to the IC wall, we observe that the cross-over from the moderate to the strong DR regime occurs roughly at the cross-over of \(We\sim 1\). In the strong DR regime at \(Re= 1.0\times 10^{6}\) we find \(We>1\), reaching a value of \(9(+7,-2)\) when approaching the inner wall, indicating that the bubbles increasingly deform as they draw near the inner wall. In the moderate DR regime at \(Re= 5.1\times 10^{5}\) we find \(We\approx 1\), indicating more rigid bubbles, even though the mean bubble diameter is larger, namely 1.2(+ 0.7,-0.1) mm, as compared with the \(Re= 1.0\times 10^{6}\) case, where it is 0.9(+0.6,-0.1) mm. We conclude that bubble deformability is a relevant mechanism behind the observed strong DR. These local results match and extend the conclusions from the global flow experiments as found by P. van den Berg et al. [Phys. Rev. Lett. 94, 044501 (2005)] and from the numerical simulations by J. Lu, A. Fernandez and G. Tryggvason [Phys. Fluids 17, No. 9, Paper No. 095102, 12 p. (2005; Zbl 1187.76323)].

MSC:

76F70 Control of turbulent flows
76T10 Liquid-gas two-phase flows, bubbly flows

Citations:

Zbl 1187.76323

References:

[1] DOI: 10.1063/1.1143416 · doi:10.1063/1.1143416
[2] DOI: 10.1017/S0022112006008688 · Zbl 1151.76347 · doi:10.1017/S0022112006008688
[3] DOI: 10.1002/ppsc.200390028 · doi:10.1002/ppsc.200390028
[4] DOI: 10.1063/1.1141457 · doi:10.1063/1.1141457
[5] DOI: 10.1017/S0022112004007943 · Zbl 1116.76368 · doi:10.1017/S0022112004007943
[6] Nihon Reoroji Gakkaishi 20 pp 35– (2000)
[7] J. Fluid Mech. 607 pp 13– (2008)
[8] J. Fluid Mech. 612 pp 1– (2008)
[9] DOI: 10.1017/S0022112098002705 · Zbl 0941.76505 · doi:10.1017/S0022112098002705
[10] DOI: 10.1007/s00348-009-0756-9 · doi:10.1007/s00348-009-0756-9
[11] Ann. Phys. (Leipz.) 19 pp 289– (1906)
[12] DOI: 10.1017/S0022112005005276 · Zbl 1108.76320 · doi:10.1017/S0022112005005276
[13] DOI: 10.1088/0953-8984/17/14/008 · doi:10.1088/0953-8984/17/14/008
[14] DOI: 10.1017/S0022112007005629 · Zbl 1165.76342 · doi:10.1017/S0022112007005629
[15] DOI: 10.1103/RevModPhys.80.225 · doi:10.1103/RevModPhys.80.225
[16] DOI: 10.1146/annurev.fl.10.010178.000403 · doi:10.1146/annurev.fl.10.010178.000403
[17] DOI: 10.1209/epl/i2005-10519-x · doi:10.1209/epl/i2005-10519-x
[18] DOI: 10.1063/1.2884471 · Zbl 1182.76546 · doi:10.1063/1.2884471
[19] DOI: 10.1103/PhysRevLett.92.078302 · doi:10.1103/PhysRevLett.92.078302
[20] DOI: 10.1063/1.1630323 · Zbl 1186.76144 · doi:10.1063/1.1630323
[21] DOI: 10.1088/1742-6596/14/1/018 · doi:10.1088/1742-6596/14/1/018
[22] DOI: 10.1103/RevModPhys.81.503 · doi:10.1103/RevModPhys.81.503
[23] DOI: 10.1017/S0022112006009487 · Zbl 1093.76507 · doi:10.1017/S0022112006009487
[24] J. Fluid Mech. 437 pp 203– (2001)
[25] Phys. Fluids A3 pp 2948– (1991)
[26] DOI: 10.1007/s007730200015 · doi:10.1007/s007730200015
[27] DOI: 10.1146/annurev-fluid-121108-145504 · doi:10.1146/annurev-fluid-121108-145504
[28] DOI: 10.1115/1.3119751 · doi:10.1115/1.3119751
[29] DOI: 10.1007/978-3-642-83831-6 · doi:10.1007/978-3-642-83831-6
[30] DOI: 10.1063/1.2786584 · Zbl 1182.76505 · doi:10.1063/1.2786584
[31] DOI: 10.1017/S0022112009993570 · Zbl 1189.76036 · doi:10.1017/S0022112009993570
[32] DOI: 10.1146/annurev.fluid.32.1.659 · Zbl 0989.76082 · doi:10.1146/annurev.fluid.32.1.659
[33] DOI: 10.1017/S0022112085002075 · doi:10.1017/S0022112085002075
[34] DOI: 10.1063/1.864620 · doi:10.1063/1.864620
[35] DOI: 10.1016/j.flowmeasinst.2007.10.004 · doi:10.1016/j.flowmeasinst.2007.10.004
[36] DOI: 10.1007/s00348-003-0725-7 · doi:10.1007/s00348-003-0725-7
[37] Can. J. Chem. Engng 81 pp 375– (2003)
[38] DOI: 10.1063/1.2033547 · Zbl 1187.76323 · doi:10.1063/1.2033547
[39] DOI: 10.1002/aic.11459 · doi:10.1002/aic.11459
[40] DOI: 10.1103/PhysRevE.73.036308 · doi:10.1103/PhysRevE.73.036308
[41] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 · doi:10.1146/annurev.fluid.40.111406.102156
[42] DOI: 10.1016/S0029-8018(03)00079-9 · doi:10.1016/S0029-8018(03)00079-9
[43] DOI: 10.1002/aic.690210402 · doi:10.1002/aic.690210402
[44] DOI: 10.1017/jfm.2012.236 · Zbl 1275.76034 · doi:10.1017/jfm.2012.236
[45] DOI: 10.1016/0029-8018(96)00005-4 · doi:10.1016/0029-8018(96)00005-4
[46] DOI: 10.1103/PhysRevA.46.6390 · doi:10.1103/PhysRevA.46.6390
[47] DOI: 10.1103/PhysRevLett.106.024502 · doi:10.1103/PhysRevLett.106.024502
[48] DOI: 10.1016/S0142-727X(00)00048-5 · doi:10.1016/S0142-727X(00)00048-5
[49] DOI: 10.1063/1.3548924 · doi:10.1063/1.3548924
[50] DOI: 10.1007/BF02492919 · doi:10.1007/BF02492919
[51] DOI: 10.1002/mame.201000339 · doi:10.1002/mame.201000339
[52] DOI: 10.1002/1097-0363(20010315)35:5&lt;593::AID-FLD105&gt;3.0.CO;2-U · Zbl 1012.76037 · doi:10.1002/1097-0363(20010315)35:5<593::AID-FLD105>3.0.CO;2-U
[53] DOI: 10.1103/PhysRevLett.94.044501 · doi:10.1103/PhysRevLett.94.044501
[54] DOI: 10.1063/1.1862192 · doi:10.1063/1.1862192
[55] DOI: 10.1103/PhysRevLett.98.084501 · doi:10.1103/PhysRevLett.98.084501
[56] DOI: 10.1063/1.3492463 · doi:10.1063/1.3492463
[57] DOI: 10.1016/j.euromechflu.2012.03.013 · Zbl 1291.76013 · doi:10.1016/j.euromechflu.2012.03.013
[58] DOI: 10.1146/annurev-fluid-122109-160756 · Zbl 1299.76277 · doi:10.1146/annurev-fluid-122109-160756
[59] DOI: 10.1103/PhysRevLett.108.024501 · doi:10.1103/PhysRevLett.108.024501
[60] J. Fluid Mech. 608 pp 21– (2008)
[61] J. Fluids Engng 130 pp 111– (2008)
[62] DOI: 10.1007/s00348-006-0169-y · doi:10.1007/s00348-006-0169-y
[63] DOI: 10.1063/1.1142117 · doi:10.1063/1.1142117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.