×

Worst-case amplification of disturbances in inertialess Couette flow of viscoelastic fluids. (English) Zbl 1287.76101

Summary: Amplification of deterministic disturbances in inertialess shear-driven channel flows of viscoelastic fluids is examined by analysing the frequency responses from spatio-temporal body forces to the velocity and polymer stress fluctuations. In strongly elastic flows, we show that disturbances with large streamwise length scales may be significantly amplified even in the absence of inertia. For fluctuations without streamwise variations, we derive explicit analytical expressions for the dependence of the worst-case amplification (from different forcing to different velocity and polymer stress components) on the Weissenberg number \((We)\), the maximum extensibility of the polymer chains \((L)\), the viscosity ratio and the spanwise wavenumber. For the Oldroyd-B model, the amplification of the most energetic components of velocity and polymer stress fields scales as \(We^{2}\) and \(We^{4}\). On the other hand, the finite extensibility of polymer molecules limits the largest achievable amplification even in flows with infinitely large Weissenberg numbers: in the presence of wall-normal and spanwise forces, the amplification of the streamwise velocity and polymer stress fluctuations is bounded by quadratic and quartic functions of \(L\). This high amplification signals low robustness to modelling imperfections of inertialess channel flows of viscoelastic fluids. The underlying physical mechanism involves interactions of polymer stress fluctuations with a base shear, and it represents a close analogue of the lift-up mechanism that initiates a bypass transition in inertial flows of Newtonian fluids.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76A10 Viscoelastic fluids

References:

[1] DOI: 10.1016/j.jnnfm.2003.09.003 · Zbl 1106.76367 · doi:10.1016/j.jnnfm.2003.09.003
[2] DOI: 10.1103/PhysRevLett.95.024501 · doi:10.1103/PhysRevLett.95.024501
[3] DOI: 10.1017/S0022112090001124 · Zbl 0706.76011 · doi:10.1017/S0022112090001124
[4] Robust and Optimal Control (1996) · Zbl 0999.49500
[5] DOI: 10.1080/03602550902824606 · doi:10.1080/03602550902824606
[6] DOI: 10.1016/S0169-5983(02)00087-4 · doi:10.1016/S0169-5983(02)00087-4
[7] DOI: 10.1145/365723.365727 · doi:10.1145/365723.365727
[8] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[9] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[10] DOI: 10.1038/35011172 · doi:10.1038/35011172
[11] The Structure and Rheology of Complex Fluids (1999)
[12] DOI: 10.1007/BF00366504 · doi:10.1007/BF00366504
[13] DOI: 10.1038/35073524 · doi:10.1038/35073524
[14] DOI: 10.1016/j.jnnfm.2011.02.010 · Zbl 1282.76052 · doi:10.1016/j.jnnfm.2011.02.010
[15] DOI: 10.1038/35011019 · doi:10.1038/35011019
[16] DOI: 10.1063/1.3299324 · Zbl 1183.76263 · doi:10.1063/1.3299324
[17] DOI: 10.1063/1.858894 · Zbl 0809.76078 · doi:10.1063/1.858894
[18] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[19] DOI: 10.1016/0377-0257(88)85062-6 · Zbl 0669.76016 · doi:10.1016/0377-0257(88)85062-6
[20] DOI: 10.1017/S0022112009006223 · Zbl 1171.76364 · doi:10.1017/S0022112009006223
[21] J. Fluid Mech. 601 pp 407– (2008)
[22] DOI: 10.1016/0167-6911(90)90049-Z · Zbl 0699.93021 · doi:10.1016/0167-6911(90)90049-Z
[23] DOI: 10.1103/RevModPhys.72.603 · doi:10.1103/RevModPhys.72.603
[24] DOI: 10.1007/BF02551385 · Zbl 0674.93020 · doi:10.1007/BF02551385
[25] DOI: 10.1088/1367-2630/6/1/029 · doi:10.1088/1367-2630/6/1/029
[26] Dynamics of Polymeric Liquids vol. 2 (1987)
[27] DOI: 10.1103/PhysRevLett.96.144502 · doi:10.1103/PhysRevLett.96.144502
[28] DOI: 10.1103/PhysRevE.84.045301 · doi:10.1103/PhysRevE.84.045301
[29] Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators (2005)
[30] J. Fluid Mech. 453 pp 57– (2002)
[31] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[32] Bulletin of the American Physical Society Vol. 56 (2011)
[33] DOI: 10.1098/rsta.2003.1355 · Zbl 1069.76501 · doi:10.1098/rsta.2003.1355
[34] J. Comput. Phys. (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.