×

Generating Borel measurable mappings with continuous mappings. (English) Zbl 1287.54033

Let \(S\) be a semigroup and \(U\) be a subset of \(S\). The relative rank of \(S\) with respect to \(U\) is the minimal cardinality of a subset \(V\) of \(S\) such that \(U\) together with \(V\) generate \(S\). The principal result in the theory of relative ranks of semigroups of mappings, where the composition of mappings is the semigroup operation, is due to W. Sierpiński [Fundam. Math. 24, 209–212 (1935; Zbl 0011.10607)]. It says that the relative rank of the semigroup of all mappings \(A^A\) from an infinite set \(A\) to \(A\) with respect to any subsemigroup is either uncountable or finite and then equal to 0, 1 or 2. Note that S. Banach in [Fundam. Math. 25, 5–6 (1935; Zbl 0011.25305)] gave a very nice short proof of this theorem.
In the present paper, the authors consider a relative rank that depends only on topology, namely the relative rank of the semigroup of all Borel measurable mappings with respect to the semigroup of continuous mappings for some classical topological spaces. In their main result, they show that this rank is equal to the first uncountable cardinal \(\aleph_1\) for a wide family of Polishable topological spaces \(X\), namely those with either can be retracted to a Cantor subset of \(X\), so, in particular, all uncountable zero-dimensional spaces, or contain a topological copy of the interval \([0,1]\) (so, in particular, Euclidean spaces), or homeomorphic to their Cartesian square \(X^2\).

MSC:

54H15 Transformation groups and semigroups (topological aspects)
20M20 Semigroups of transformations, relations, partitions, etc.
Full Text: DOI

References:

[1] Banach, S., Sur un theorème de M. Sierpiński, Fund. Math., 25, 5-6 (1935) · JFM 61.0230.01
[2] Cook, H., Continua which admit only the identity mapping onto nondegenerate subcontinua, Fund. Math., 60, 241-249 (1967) · Zbl 0158.41503
[3] Cichoń, J.; Mitchell, J. D.; Morayne, M., Generating continuous mappings with Lipschitz mappings, Trans. Amer. Math. Soc., 359, 2059-2074 (2007) · Zbl 1110.54019
[4] Cichoń, J.; Mitchell, J. D.; Morayne, M.; Pèresse, Y., Relative ranks of Lipschitz mappings on countable discrete metric spaces, Topology Appl., 158, 412-423 (2011) · Zbl 1222.54037
[5] Cichoń, J.; Morayne, M., Universal functions and generalized classes of functions, Proc. Amer. Math. Soc., 102, 83-89 (1988) · Zbl 0646.26009
[6] Galvin, F., Generating countable sets of permutations, J. London Math. Soc., 51, 230-242 (1995) · Zbl 0837.20005
[7] Higgins, P. M.; Mitchell, J. D.; Morayne, M.; Ruškuc, N., Rank properties of endomorphisms of infinite partially ordered sets, Bull. London Math. Soc., 38, 177-191 (2006) · Zbl 1101.06001
[8] Higgins, P. M.; Mitchell, J. D.; Ruškuc, N., Generating the full transformation semigroup using order preserving mappings, Glasg. Math. J., 45, 557-566 (2003) · Zbl 1043.20041
[9] Howie, J. M.; Ruškuc, N.; Higgins, P. M., On relative ranks of full transformation semigroups, Comm. Algebra, 26, 733-748 (1998) · Zbl 0902.20027
[10] Kuratowski, K., Sur une généralisation de la notion dʼhoméomorphie, Fund. Math., 22, 206-220 (1934) · JFM 60.0512.01
[11] Kuratowski, K., Topology, vol. I (1966), Academic Press/Państwowe Wydawnictwo Naukowe: Academic Press/Państwowe Wydawnictwo Naukowe New York, London/Warsaw · Zbl 0158.40901
[12] Mitchell, J. D.; Pèresse, Y., Sierpińskiʼs rank for groups and semigroups, Wiadom. Mat., 48, 2, 209-215 (2012), Special Issue edited by K. Ciesielski, T. Nadzieja, K. Pawałowski, 6th European Congress of Mathematicians · Zbl 1277.22003
[13] Sierpiński, W., Sur les suites infinies de fonctions définies dans les ensembles quelconques, Fund. Math., 24, 209-212 (1935) · JFM 61.0229.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.