×

Generalized Boyd’s indices and applications. (English) Zbl 1287.42014

Boyd indices were originally introduced for rearrangement-invariant Banach function spaces (see for example [D. W. Boyd, Can. J. Math. 21, 1245–1254 (1969; Zbl 0184.34802)]). They play an important role in order to study interpolation of operators and also to characterize the boundedness of some important operators that appear in harmonic analysis.
In this paper, a generalization of Boyd indices to general Banach function spaces \(\mathbb{X}\) is introduced and they are used to study some functional properties of this kind of spaces. In particular, ithe author proves a characterization in terms of generalized Boyd indices of some norm inequalities involving the action of the dilation operator acting on euclidean balls that, at the same time, guarantee that the Schwartz class of functions \({\mathcal S}({\mathbb R}^N)\) is a dense subset in \(\mathbb{X}\).
As an application, it is studied whether \(\mathbb{X}^p\), \(1<p<\infty\) satisfies the Littlewood-Paley characterization or not. Also, the validity of Fefferman-Stein type vector-valued inequalities on the norm \(\| \| \cdot\|_{\ell^q}\|_{\mathbb{X}^p}\), \(1<p,q<+\infty\). These norm inequalities are the main tool to give atomic and molecular decompositions of the Triebel-Lizorkin type spaces associated with \(\mathbb{X}\).

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citations:

Zbl 0184.34802
Full Text: DOI

References:

[1] Andersen J., Studia Math. 69 pp 19– (1980)
[2] Berezanski Y., Amer. Math. Soc. pp 63– (1986)
[3] DOI: 10.4153/CJM-1967-078-6 · Zbl 0166.12101 · doi:10.4153/CJM-1967-078-6
[4] DOI: 10.1090/S0002-9939-1967-0212556-3 · doi:10.1090/S0002-9939-1967-0212556-3
[5] Boyd D., Pacific J. Math. 24 pp 19– (1968) · Zbl 0173.16603 · doi:10.2140/pjm.1968.24.19
[6] DOI: 10.4153/CJM-1969-137-x · Zbl 0184.34802 · doi:10.4153/CJM-1969-137-x
[7] DOI: 10.1016/j.aim.2005.04.009 · Zbl 1098.42017 · doi:10.1016/j.aim.2005.04.009
[8] Ho K.-P., Nagoya Math. J. 118 pp 59– (2007)
[9] DOI: 10.4153/CJM-2008-055-x · Zbl 1157.42005 · doi:10.4153/CJM-2008-055-x
[10] Ho K.-P., Math. Scand. 108 pp 77– (2011) · Zbl 1216.46031 · doi:10.7146/math.scand.a-15161
[11] Kurtz D., Trans. Amer. Math. Soc. 259 pp 235– (1980)
[12] Rubio de Francia J., S.) 7 pp 393– (1982)
[13] DOI: 10.2307/2374284 · Zbl 0558.42012 · doi:10.2307/2374284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.