×

Comparative asymptotics of solutions and trace formulas for a class of difference equations. (English. Russian original) Zbl 1287.39010

Proc. Steklov Inst. Math. 272, Suppl. 2, S96-S137 (2011); translation from Sovrem. Probl. Mat. 6, 4-74 (2006).
Summary: Properties of Jacobi operators generated by Markov functions are studied. The main results refer to the case where the support of the corresponding spectral measure \(\mu\) consists of several intervals of the real line. In this class of operators, a comparative asymptotic formula for two solutions of the corresponding difference equation, polynomials orthogonal with respect to the measure \(\mu\) and functions of the second kind (Weyl solutions) is found. Asymptotic trace formulas for the coefficients \(a_n\) and \(b_n\) in this difference equation are obtained. The derivation of the asymptotic formulas is based on standard techniques for studying the asymptotic properties of polynomials orthogonal on several intervals and consists in reducing the asymptotic problem to investigating properties of solutions to the singular integral equation, studied by J. Nuttal [Constructive Approximation 6, No. 2, 157–166 (1990; Zbl 0685.41014)].

MSC:

39A22 Growth, boundedness, comparison of solutions to difference equations
39A10 Additive difference equations

Citations:

Zbl 0685.41014
Full Text: DOI

References:

[1] P. L. Chebyshev, ”On Continued Fractions,” Uchen. Zap. Imp. Akad. Nauk III, 636–664 (1855).
[2] N. I. Akhiezer, ”The Chebyshev Direction in Function Theory,” inMathematics of the XIX Century (Nauka, Moscow, 1987), pp. 9–79 [in Russian]. · Zbl 0636.30001
[3] T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8, J1–122 (1894); 9, A1-47 (1895). · JFM 25.0326.01 · doi:10.5802/afst.108
[4] P. Tchébycheff, ”Sur le dévelopment des fonctions à une seule variable,” Bull. Acad. Sci. St.-Petersburg Cl. Phys.-Math. 1, 193–200 (1860).
[5] L. D. Faddeev and O. A. Yakubovskii, Lectures on Quantum Mechanics for Student-Mathematicians (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2001).
[6] G. Szégö, Orthogonal Polynomials (Amer.Math. Soc., New York, 1959; Inostrannaya Literatura, Moscow, 1961).
[7] E. M. Nikishin, ”Sturm-Liouville Discrete Operator and Some Problems of Function Theory,” Tr. Semin. Im. I.G. Petrovskogo 10, 3–77 (1984). · Zbl 0573.34023
[8] Damanik D., Killip R., and Simon B., ”Necessary and Sufficient Conditions in the Spectral Theory of Jacobi Matrices and Schrödinger Operators,” arXiv: math.SP/0309206. · Zbl 1084.34075
[9] K. M. Case, ”Orthogonal Polynomials from the Viewpoint of Scattering Theory,” J. Math. Phys. 15(12), 2166–2174 (1974). · Zbl 0288.42009 · doi:10.1063/1.1666597
[10] J. S. Geronimo and K. M. Case, ”Scattering Theory and Polynomials Orthogonal on the Real Line,” Trans. Amer.Math. Soc. 258(2), 467–494 (1980). · Zbl 0436.42018 · doi:10.1090/S0002-9947-1980-0558185-4
[11] B. Simon, ”The Classical Moment Problem as a Self-Adjoint Finite Difference Operator,” Adv. Math. 137, 82–203 (1998). · Zbl 0910.44004 · doi:10.1006/aima.1998.1728
[12] A. I. Aptekarev and E. M. Nikishin, ”Scattering Problem for the Discrete Sturm-Liouville Operator,” Mat. Sb. 121(3), 327–358 (1983). · Zbl 0527.34024
[13] A. I. Aptekarev, ”Asymptotic Properties of Polynomials Orthogonal on a System of Contours and Periodic Motion of Toda Chains,” Mat. Sb. 125(2), 231–258 (1984).
[14] V. A. Kalyagin, ”Hermite-Padé Approximants and Spectral Analysis of Nonsymmetric Difference Operators,” Mat. Sb. 185(6), 79–100 (1994) [Russian Acad. Sci. Sb.Math. 82 (1), 199–216 (1995)].
[15] D. Damanik and B. Simon, ”Jost Functions and Jost Solutions for Jacobi Matrices, I. A Necessary and Sufficient Condition for Szegö Asymptotics,” arXiv: math.SP/0502486. · Zbl 1122.47029
[16] R. Killip and B. Simon, ”Sum Rules for Jacobi Matrices and Their Applications to Spectral Theory,” Ann. Math. (2) 158, 253–321 (2003). · Zbl 1050.47025 · doi:10.4007/annals.2003.158.253
[17] I. Egorova and L. Golinskii, ”Discrete Spectrum for Complex Perturbations of Periodic Jacobi Matrices,” J. Difference Equations Appl. 11(14), 1185–1203 (2005). · Zbl 1093.47033 · doi:10.1080/10236190500299346
[18] A. A. Gonchar, ”On the Convergence of Padé Approximants for Some Classes of Meromorphic Functions,” Mat. Sb. 97, 607–629 (1975) [Math. USSR Sb. 26, 555–575 (1975)].
[19] S. P. Suetin, ”Spectral Properties of a Class of Discrete Sturm-Liouville Operators,” Usp. Mat. Nauk 61(2), 171–172 (2006) [Russian Math. Surveys 61 (2), 365–367 (2006)]. · Zbl 1157.47024 · doi:10.4213/rm1737
[20] A. A. Gonchar, ”On the Uniform Convergence of Diagonal Padé Approximants,” Mat. Sb. 118(4), 535–556 (1982). · Zbl 0529.41016
[21] E. A. Rakhmanov, ”On Ratio Asymptotics for Orthogonal Polynomials,” Mat. Sb. 103(2), 237–252 (1977).
[22] S. P. Suetin, ”Approximation Properties of the Poles of Diagonal Padé Approximants for Certain Generalizations of Markov Functions,” Mat. Sb. 193(12), 81–114 (2002) [Russian Acad. Sci. Mat. Sb. 193 (12), 1837–1866 (2002)]. · doi:10.4213/sm628
[23] A. A. Gonchar and S. P. Suetin, ”On Padé Approximants for Markov-Type Meromorphic Functions,” in Modern Problems ofMathematics (Mat. Inst. im.V.A. Steklova, Ross. Akad.Nauk, Moscow, 2004), Vol. 5, pp. 3–65 [in Russian]; Proc. Sleklov Inst.Math. 272, Suppl. 2, 57–94 (2011).
[24] S. P. Suetin, ”On the Interpolation Properties of Diagonal Padé Approximants of Elliptic Functions,” Usp. Mat. Nauk 59(4), 201–202 (2004) [RussianMath. Surveys 59 (4), 800–802 (2004)]. · doi:10.4213/rm767
[25] S. P. Suetin, ”On the Uniform Convergence of Diagonal Padé Approximants for Hyperelliptic Functions,” Mat. Sb. 191(9), 81–114 (2000) [Russian Acad. Sci. Sb.Math. 191 (9), 1339–1373 (2000)]. · doi:10.4213/sm508
[26] S. P. Suetin, ”On the Dynamics of ”Wandering” Zeros of Polynomials Orthogonal on Some Segments,” Usp. Mat. Nauk 57(2), 199–200 (2002) [Russian Math. Surv. 57 (2), 425–427 (2002)]. · Zbl 1117.30302 · doi:10.4213/rm507
[27] S. P. Suetin, ”Padé Approximants and Efficient Analytic Continuation of a Power Series,” Usp. Mat. Nauk 57(1), 45–142 (2002) [Russian Math. Surveys 57 (1), 43–141 (2002)]. 57 (1), 45–142 (2002). · doi:10.4213/rm475
[28] J. Nuttall, ”Pade Polynomial Asymptotics from a Singular Integral Equation,” Constr. Approx. 6(2), 157–166 (1990). · Zbl 0685.41014 · doi:10.1007/BF01889355
[29] E. A. Rakhmanov, ”On the Convergence of Diagonal Padé Approximants,” Mat. Sb. 104(2), 271–291 (1977).
[30] H. Widom, ”Extremal Polynomials Associated with a System of Curves in the Complex Plane,” Adv. Math. 3, 127–232 (1969). · Zbl 0183.07503 · doi:10.1016/0001-8708(69)90005-X
[31] E. I. Zverovich, ”Boundary Value Problems of the Theory of Analytic Functions in Hölder Classes on Riemann Surfaces,” Usp. Mat. Nauk 26(1), 113–180 (1971). · Zbl 0217.10201
[32] G. Springer, Introduction to Riemann Surfaces (Addison-Wesley, Reading, Mass., 1957; Inostrannaya Literatura, Moscow, 1960). · Zbl 0078.06602
[33] B. A. Dubrovin, ”Theta-Function and Nonlinear Equations,” Usp. Mat. Nauk 36(2), 11–80 (1981). · Zbl 0478.58038
[34] N. I. Akhiezer, ”Orthogonal Polynomials on Several Intervals,” Dokl. Akad. Nauk SSSR 134(1), 9–12 (1960) [SovietMath. Dokl. 1, 989–992 (1960)]. · Zbl 0101.29205
[35] N. I. Akhiezer and Yu. Ya. Tomchuk, ”On the Theory of Orthogonal Polynomials over Several Intervals,” Dokl. Akad. Nauk SSSR 138(4), 743–746 (1961) [SovietMath. Dokl. 2, 687–690 (1961)]. · Zbl 0109.29601
[36] N. I. Akhiezer, ”A Continuous Analogue of Orthogonal Polynomials on a System of Intervals,” Dokl. Akad. Nauk SSSR 141(2), 263–266 (1961) [SovietMath. Dokl. 2, 1409–1412 (1961)].
[37] B.M. Levitan, The Inverse Sturm-Liouville Problem (Nauka, Moscow, 1984) [in Russian]. · Zbl 0576.34021
[38] V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1989) [in Russian].
[39] B. A. Dubrovin, ”The Periodic Problem for the Korteweg-de Vries Equation in the Class of Finite-Gap Potentials,” Funkts. Anal. Ego Prilozh. 9(3), 41–52 (1975). · Zbl 0316.30019 · doi:10.1007/BF01078174
[40] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (Nauka, Moscow, 1966) [in Russian]. · Zbl 0148.30603
[41] J. S. Jeronimo and W. Van Assche, ”Orthogonal Polynomials with Asymptotically Periodic Recurrence Coefficients,” J. Approx. Theory 46, 251–283 (1986). · Zbl 0604.42023 · doi:10.1016/0021-9045(86)90065-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.