×

Optimal control of single spin-\(1/2\) quantum systems. (English) Zbl 1286.81173

Summary: The purpose of this study is to explore the optimal control problems for a class of single spin-\(1/2\) quantum ensembles. The system in question evolves on a manifold in \(\mathbb R^3\) and is modelled as a bilinear control form whose states are represented as coherence vectors. An associated matrix Lie group system with state space \(\mathrm{SO}(3)\) is introduced in order to facilitate solving the given problem. The controllability as well as the reachable set of the system is first analysed in detail. Then, the maximum principle is applied to the optimal control for system evolving on the Lie group of special orthogonal matrices of dimension 3, with cost that is quadratic in the control input. As an illustrative example, the authors apply their result to perform a reversible logic quantum operation NOT on single spin-\(1/2\) system. Explicit expressions for the optimal control are given which are linked to the initial state of the system.

MSC:

81V35 Nuclear physics
49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] DongD., and PetersenI.: ‘Quantum control theory and applications: a survey’, IET Control Theory Appl., 2010, 4, pp. 2651-2671 (doi: https://doi.org/10.1049/iet‐cta.2009.0508) · doi:10.1049/iet‐cta.2009.0508
[2] QiB., and GuoL.: ‘Is measurement‐based feedback still better for quantum control systems?’, Syst. Control Lett., 2010, 59, pp. 333-339 (doi: https://doi.org/10.1016/j.sysconle.2010.03.008) · Zbl 1198.93035 · doi:10.1016/j.sysconle.2010.03.008
[3] AltafiniC.: ‘Feedback control of spin systems’, Quantum Inf. Process., 2007, 6, pp. 9-36 (doi: https://doi.org/10.1007/s11128‐006‐0038‐x) · Zbl 1119.81320 · doi:10.1007/s11128‐006‐0038‐x
[4] D’AlesandroD., and DahlehM.: ‘Optimal control of two‐level quantum systems’, IEEE Trans. Autom. Control, 2001, 46, pp. 866-876 (doi: https://doi.org/10.1109/9.928587) · Zbl 0993.81070 · doi:10.1109/9.928587
[5] KhanejaN.BrockettR., and GlaserS.: ‘Time optimal control in spin systems’, Phys. Rev. A, 2001, 63, p. 032308 (doi: https://doi.org/10.1103/PhysRevA.63.032308) · doi:10.1103/PhysRevA.63.032308
[6] YuanH.: ‘Control of single spin in Markovian environment’. Proc. IEEE Conf. Decision Control, 2009, pp. 2498-2503
[7] BoscainU., and MasonP.: ‘Time minimal trajectories for a spin 1/2 particle in a magnetic field’, J. Math. Phys., 2006, 47, p. 062101 (doi: https://doi.org/10.1063/1.2203236) · Zbl 1112.81098 · doi:10.1063/1.2203236
[8] DongD., and PetersenI.: ‘Sliding mode control of two‐level quantum systems’, Automatica, 2012, 48, pp. 725-735 (doi: https://doi.org/10.1016/j.automatica.2012.02.003) · Zbl 1246.93027 · doi:10.1016/j.automatica.2012.02.003
[9] DongD., and PetersenI.: ‘Notes on sliding mode control of two‐level quantum systems’, Automatica, 2012, 48, pp. 3089-3097 (doi: https://doi.org/10.1016/j.automatica.2012.08.020) · Zbl 1255.93036 · doi:10.1016/j.automatica.2012.08.020
[10] ZhangG., and JamesM.: ‘Direct and indirect couplings in coherent feedback control of linear quantum systems’, IEEE Trans. Autom. Control, 2011, 56, pp. 1535-1550 (doi: https://doi.org/10.1109/TAC.2010.2096010) · Zbl 1368.81095 · doi:10.1109/TAC.2010.2096010
[11] ZhangG.LeeH.W.J.HuangB., and ZhangH.: ‘Coherent feedback control of linear quantum optical systems via squeezing and phase shift’, SIAM J. Control Optim., 2012, 50, pp. 2130-2150 (doi: https://doi.org/10.1137/110823444) · Zbl 1252.93111 · doi:10.1137/110823444
[12] RabitzH.: ‘Optimal control of quantum systems: origins of inherent robustness to control field fluctuations’, Phys. Rev. A, 2002, 66, p. 063405 (doi: https://doi.org/10.1103/PhysRevA.66.063405) · doi:10.1103/PhysRevA.66.063405
[13] BrockettR.: ‘System theory on group manifolds and coset spaces’, SIAM J. Control, 1972, 10, pp. 265-284 (doi: https://doi.org/10.1137/0310021) · Zbl 0238.93001 · doi:10.1137/0310021
[14] JurdjevicV., and SussmannH.: ‘Control systems on Lie groups’, J. Differ. Equ., 1972, 12, pp. 313-329 (doi: https://doi.org/10.1016/0022‐0396(72)90035‐6) · Zbl 0237.93027 · doi:10.1016/0022‐0396(72)90035‐6
[15] BrockettR.: ‘Lie theory and control systems defined on spheres’, SIAM J. Appl. Math., 1973, 25, pp. 213-225 (doi: https://doi.org/10.1137/0125025) · Zbl 0272.93003 · doi:10.1137/0125025
[16] AltafiniC.: ‘Representation multiqubit unitary evolution via Stokes tensors’, Phys. Rev. A, 2004, 70, p. 032331 (doi: https://doi.org/10.1103/PhysRevA.70.032331) · doi:10.1103/PhysRevA.70.032331
[17] ZhouS., and FuS.: ‘Matrix representations for adjoint and anti‐adjoint operators in multi‐spin 1/2 system’, Quantum Inf. Process., 2010, 10, pp. 379-394 (doi: https://doi.org/10.1007/s11128‐010‐0203‐0) · Zbl 1216.81044 · doi:10.1007/s11128‐010‐0203‐0
[18] D’AlesandroD.: ‘Small time controllability of systems on compact Lie groups and spin angular momentum’, J. Math. Phys., 2001, 42, pp. 4488-4496 (doi: https://doi.org/10.1063/1.1388197) · Zbl 1063.93007 · doi:10.1063/1.1388197
[19] FrancescaA., and D’AlesandroD.: ‘Notions of controllability for bilinear multilevel quantum systems’, IEEE Trans. Autom. Control, 2003, 48, pp. 1399-1403 (doi: https://doi.org/10.1109/TAC.2003.815027) · Zbl 1364.93059 · doi:10.1109/TAC.2003.815027
[20] BaillieulJ.: ‘Geometric methods for nonlinear optimal control problems’, J. Optim. Theory Appl., 1978, 25, pp. 519-548 (doi: https://doi.org/10.1007/BF00933518) · Zbl 0368.49013 · doi:10.1007/BF00933518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.