×

BPX-preconditioning for isogeometric analysis. (English) Zbl 1286.65151

Summary: We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by means of tensor product B-splines mapped onto the physical domain. We construct additive multilevel preconditioners and show that they are asymptotically optimal, i.e., the spectral condition number of the resulting preconditioned stiffness matrix is independent of \(h\). Together with a nested iteration scheme, this enables an iterative solution scheme of optimal linear complexity. The theoretical results are substantiated by numerical examples in two and three space dimensions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
65D17 Computer-aided design (modeling of curves and surfaces)
35Jxx Elliptic equations and elliptic systems

Software:

IETI

References:

[1] Axelsson, O.; Vassilevski, P. S., Algebraic multilevel preconditioning methods I, Numer. Math., 56, 157-177 (1989) · Zbl 0661.65110
[2] Axelsson, O.; Vassilevski, P. S., Algebraic multilevel preconditioning methods II, SIAM J. Numer. Anal., 27, 1569-1590 (1990) · Zbl 0715.65091
[3] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 7, 1031-1090 (2006) · Zbl 1103.65113
[4] Beirão da Veiga, L.; Cho, D.; Pavarino, L. F.; Scacchi, S., Overlapping Schwarz methods for Isogeometric Analysis, SIAM J. Numer. Anal., 50, 3, 1394-1416 (2012) · Zbl 1250.65149
[5] Beirão da Veiga, L.; Cho, D.; Pavarino, L. F.; Scacchi, S., BDDC preconditioners for isogeometric analysis, Math. Models Methods Appl. Sci., 23, 6, 1099-1142 (2013) · Zbl 1280.65138
[6] Beirão da Veiga, L.; Cho, D.; Sangalli, G., Anisotropic NURBS approximation in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 1-17 (2012) · Zbl 1243.65027
[7] Braess, D., Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics (2007), Cambridge University Press · Zbl 1118.65117
[8] de Boor, C., A Practical Guide to Splines (2001), Springer · Zbl 0987.65015
[9] Bramble, J. H.; Pasciak, J. E.; Xu, J., Parallel multilevel preconditioners, Math. Comput., 55, 1-22 (1990) · Zbl 0725.65095
[10] Dahmen, W.; Kunoth, A., Multilevel preconditioning, Numer. Math., 63, 315-344 (1992) · Zbl 0757.65031
[11] Dahmen, W., Wavelet and multiscale methods for operator equations, Acta Numer., 6, 55-228 (1997) · Zbl 0884.65106
[12] Gahalaut, K. P.S.; Kraus, J. K.; Tomar, S. K., Multigrid methods for isogeometric discretization, Comput. Methods Appl. Mech. Engrg., 253, 1, 413-425 (2013) · Zbl 1297.65153
[13] Hackbusch, W., Multigrid Methods and Applications (1985), Springer · Zbl 0577.65118
[14] Holtz, M.; Kunoth, A., B-spline based monotone multigrid methods, SIAM J. Numer. Anal., 45, 3, 1175-1199 (2007) · Zbl 1145.65042
[15] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[16] Kleiss, S. K.; Pechstein, C.; Jüttler, B.; Tomar, S., IETI — Isogeometric Tearing and Interconnecting, Comput. Methods Appl. Mech. Engrg., 247-248, 201-215 (2012) · Zbl 1352.65628
[17] Kunoth, A., Multilevel Preconditioning (1994), Verlag Shaker: Verlag Shaker Aachen · Zbl 0833.65132
[18] Kunoth, A., Optimized wavelet preconditioning, (DeVore, R. A.; Kunoth, A., Multiscale, Nonlinear and Adaptive Approximation (2009), Springer), 325-378 · Zbl 1190.65103
[19] Maes, J.; Kunoth, A.; Bultheel, A., BPX-type preconditioners for 2nd and 4th order elliptic problems on the sphere, SIAM J. Numer. Anal., 45, 1, 206-222 (2007) · Zbl 1144.65076
[20] Oswald, P., On discrete norm estimates related to multilevel preconditioners in the finite element method, (Ivanov, K. G.; Petrushev, P.; Sendov, B., Constructive Theory of Functions. Constructive Theory of Functions, Proc. Int. Conf. Varna, 1991 (1992), Bulg. Acad. Sci.: Bulg. Acad. Sci. Sofia), 203-214
[21] Schumaker, Larry L., Spline Functions: Basic Theory (2007), Cambridge University Press: Cambridge University Press Cambridge, (Cambridge Mathematical Library) · Zbl 1123.41008
[22] Yserentant, H., On the multi-level splitting of finite element spaces, Numer. Math., 49, 379-412 (1986) · Zbl 0608.65065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.