×

Virtual model validation of complex multiscale systems: applications to nonlinear elastostatics. (English) Zbl 1286.62016

Summary: We propose a virtual statistical validation process as an aid to the design of experiments for the validation of phenomenological models of the behavior of material bodies, with focus on those cases in which knowledge of the fabrication process used to manufacture the body can provide information on the micro-molecular-scale properties underlying macroscale behavior. One example is given by models of elastomeric solids fabricated using polymerization processes. We describe a framework for model validation that involves Bayesian updates of parameters in statistical calibration and validation phases. The process enables the quantification of uncertainty in quantities of interest (QoIs) and the determination of model consistency using tools of statistical information theory. We assert that microscale information drawn from molecular models of the fabrication of the body provides a valuable source of prior information on parameters as well as a means for estimating model bias and designing virtual validation experiments to provide information gain over calibration posteriors.

MSC:

62B15 Theory of statistical experiments
62F15 Bayesian inference
62P30 Applications of statistics in engineering and industry; control charts
74B20 Nonlinear elasticity
94A17 Measures of information, entropy

Software:

Gromacs; AMBER; QUESO; CHARMM
Full Text: DOI

References:

[2] Arlot, S.; Celisse, A., A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40-79 (2010) · Zbl 1190.62080
[4] Babuška, I.; Oden, J. T., Verification and validation in computational engineering and science: Part 1, basic concepts, Comput. Methods Appl. Mech. Engrg., 193, 1, 4047-4068 (2004)
[5] Babuška, I.; Oden, J. T., The reliability of computer predictions: Can they be trusted?, Int. J. Numer. Anal. Model., 1, 1, 1-18 (2005)
[6] Babuška, I.; Tempone, R.; Nobile, F., A systematic approach to model validation based on Bayesian updates and prediction-related rejection criteria, Comput. Methods Appl. Mech. Engrg., 197, 2517-2539 (2008) · Zbl 1139.74012
[7] Batra, R., Elements of Continuum Mechanics (2006), AIAA Education Series: AIAA Education Series Reston, VA · Zbl 1093.76001
[9] Bauman, P. T.; Oden, J. T.; Prudhomme, S., Adaptive multiscale modeling of polymeric materials with arlequin coupling and goals algorithms, Comput. Methods Appl. Mech. Engrg., 193, 799-838 (2009) · Zbl 1229.74006
[10] Bayarri, M. J.; Berger, J. O.; Paulo, R.; Sacks, J.; Cafeo, J. M.; Cavendish, C.; L. C.-H.; Tu, J., A framework for validation of computer models, Technometrics, 49, 2, 138-154 (2007)
[12] Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., CHARMM: A program for macromolecular energy, minimization and dynamics calculations, J. Comput. Chem., 4, 2, 187-217 (1983)
[13] Burns, R. L.; Johnson, S. C.; Schmid, G. H.; Kim, E. K.; Dickey, M. D.; Meiring, J. M.; Burns, S. D.; Starey, N. A.; Willson, G. C., Mesoscale modeling for sfil simulating polymerization kinetics and densification, Proc. SPIE, 5374, 349-360 (2004)
[14] Cheung, S. H.; Oliver, T. A.; Prudencio, E. E.; Prudhomme, S.; Moser, R. D., Bayesian uncertainty analysis with applications to turbulence modeling, Reliab. Engrg. Syst. Saf., 96, 1137-1149 (2011)
[18] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc., 117, 19, 5179-5197 (1995)
[19] Cover, T. M.; Thomas, J. A., Elements of Information Theory (2006), Wiley - Interscience: Wiley - Interscience Hoboken · Zbl 1140.94001
[20] Farrell, K.; Oden, J. T., Statistical calibration and validation methods of coarse-grained and macro models of atomic systems (2012), ICES: ICES REPORT, 12-45
[21] Ferson, S.; Oberkampf, W. L.; Ginzburg, L., Model validation and predictive capability for the thermal challenge problem, Comput. Methods Appl. Mech. Engrg., 197, 2408-2436 (2008) · Zbl 1388.74029
[22] Foglia, L.; Mehl, S. W.; Hill, M. C.; Perona, P.; Burlando, P., Testing alternative ground water models using cross-validation and other methods, Ground Water, 45, 5, 627-642 (2007)
[23] Gurtin, M. E., An Introduction to Continuum Mechanics (1981), Academic Press: Academic Press New York · Zbl 0559.73001
[24] Hadler, A.; Bhattacharya, R., Model validation: A probabilistic formulation, in: 50th IEEE Conference on Decision and Control and European Control Conference (2011), Orlando: Orlando FL
[25] Higdon, D.; Gattiker, J.; Williams, B.; Rightley, M., Computer model calibration using high-dimensional output, J. Am. Stat. Assoc., 103, 570-583 (2008) · Zbl 1469.62414
[26] Howson, C.; Urbach, P., Scientific Reasoning: The Bayesian Approach (2006), Open Court: Open Court Chicago and La Salle
[27] Jaynes, E. T., Theory of Probability: The Logic of Science (2003), Cambridge University Press: Cambridge University Press Cambridge, U.K. · Zbl 1045.62001
[28] Jiang, X.; Mahadevan, S., Bayesian cross-entropy methodology for optimal design of validation experiments, Measure. Sci. Technol., 17, 1895-1908 (2006)
[29] Jiang, X.; Mahadevan, S., Bayesian validation assessment of multivariate computational models, J. Appl. Stat., 15, 1, 49-65 (2008) · Zbl 1206.62006
[30] Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118, 45, 11225-11236 (1996)
[31] Jorgensen, W. L.; Tirado-Rives, J., The OPLS potential functions for proteins, Energy minimizations for crystals of cyclic peptides and crambin, J. Am. Chem. Soc., 110, 6, 1657-1666 (1988)
[32] Kennedy, M. C.; O’Hagan, A., Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1-13 (2000) · Zbl 0974.62024
[34] Le Maitre, O. P.; Knio, O. M., Spectral Methods for Uncertainty Quantification (2010), With Applications to Computational Fluid Dynamics, Springer · Zbl 1193.76003
[35] Leach, A. R., Molecular Modeling: Principles and Applications (2001), Pearson Education Limited: Pearson Education Limited Prentice Hall, Harlow
[36] (Mish, F. C., Merriam-Webster Collegiate Dictionary (1993), Merriam-Webster, Inc.: Merriam-Webster, Inc. Springfield)
[37] Mooney, M. J., A theory of large elastic deformation, J. Appl. Phys., 11, 582 (1940) · JFM 66.1021.04
[38] Moser, R. D.; Terejanu, G.; Oliver, T., C (2012), Simmons: Simmons Validating and prediction of unobserved quantities, ICES REPORT, 12-32
[39] Myung, J. I.; Pitt, M. A., Optimal experimental design for model discriminization, Psychol. Rev., 116, 499-518 (2009)
[40] Oberkampf, W. L.; Roy, C., Verification and Validation in Scientific Computing (2010), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1211.68499
[41] Oberkampf, W. L.; Trucano, T. G.; Hirsch, C., Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev., 57, 345 (2004)
[44] Oden, J. T.; Hawkins, A.; Prudhomme, S., General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 3, 1-41 (2010) · Zbl 1186.92024
[45] Oden, J. T.; Moser, R.; Ghattas, O., Computer predictions with quantified uncertainty, Part I, SIAM News, 43, 10 (2010)
[46] Oden, J. T.; Moser, R.; Ghattas, O., Computer predictions with quantified uncertainty, Part II, SIAM News, 43, 10 (2010)
[48] Oden, J. T.; Prudencio, E. E.; Hawkins-Daarud, A., Selection and assessment of phenomenological models of tumor growth, Math. Models Methods Appl. Sci., 23, 1309-1338 (2012) · Zbl 1301.92034
[49] Oden, J. T.; Prudhomme, S., Estimates of modeling error in computational mechanics, J. Comput. Phys., 182, 496-515 (2002) · Zbl 1053.74049
[50] Oden, J. T.; Prudhomme, S., Control of modeling error in calibration and validation processes for predictive stochastic models, Int. J. Numer. Methods Engrg., 1-10 (2010)
[51] Oden, J. T.; Prudhomme, S.; Romkes, A.; Bauman, P. T., Multiscale modeling of physical phenomena: adaptive control of models, SIAM J. Scient. Comput., 28, 2359-2389 (2008) · Zbl 1126.74006
[52] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19 (1995) · Zbl 0830.65120
[53] Popper, K., The Logic of Scientific Discovery (1959), Taylor & Francis: Taylor & Francis Routledge · Zbl 0083.24104
[54] Prudencio, E. E.; Cheung, S. H., Parallel adaptive multilevel sampling algorithms for the Bayesian analysis of mathematical models, Int. J. Uncert. Quantif., 2, 3, 215-237 (2012) · Zbl 1320.65022
[56] Rivlin, R. S., Large elastic deformations of isotropic materials, Philos. Trans. Roy. Soc., 240, 822, 378 (1948)
[57] Roach, P., Verification and Validation in Computational Science and Engineering (1998), Hermosa Press: Hermosa Press Albuquerque, N.M.
[58] Santer, T.; Williams, B. J., W (2003), Notz: Notz The Design and Analysis of Computer Experiments, Springer · Zbl 1041.62068
[60] Sornette, D.; Davis, A. B.; Ide, K.; Vixie, K. R.; Pisarenko, V.; Kamm, J. R., Algorithm for model validation: Theory and applications, PNAS, 104, 16, 6562-6567 (2007)
[61] Tarantola, A., Inverse Problems Theory and Methods for Model Parameter Estimation (2005), SIAM: SIAM Philadelphia · Zbl 1074.65013
[63] Voter, A. F., Introduction to the Kinetic Monte Carlo Method, (Sickafus, K. E.; Kotomin, E. A., Radiation Effects in Solids (2005), Springer NATO Publishing Unit, Dordrecht, The Netherlands: Springer NATO Publishing Unit, Dordrecht, The Netherlands Lecture Notes in Computer Science)
[65] Weiner, P. K.; Kollman, P. A., AMBER: Assisted Model Building with Energy Refinement, A general program for modeling molecules and their interactions, J. Comput. Chem., 2, 3, 287-303 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.