×

Approximation theorems for solving common solution of a system of mixed equilibrium problems and variational inequality problems and fixed point problems for asymptotically strict pseudocontractions in the intermediate sense. (English) Zbl 1285.47083

Summary: In this paper, we introduce a new iterative algorithm which is constructed by using the hybrid projection method for finding the common solution of a system of mixed equilibrium problems of bifunctions satisfying certain conditions and the common solution of variational inequality problems of inverse strongly monotone mappings and the common solution of fixed point problems for a family of uniformly Lipschitzian continuous and asymptotically \(\lambda_{i}\)-strict pseudocontractive mapping in the intermediate sense. We prove the strong convergence for a new iterative algorithm under some mild conditions in Hilbert spaces. Finally, we also give some numerical examples to support our results.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J20 Variational and other types of inequalities involving nonlinear operators (general)
Full Text: DOI

References:

[1] Ceng, L. C.; Yao, J. C., A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214, 186-201 (2008) · Zbl 1143.65049
[2] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student., 63, 123-145 (1994) · Zbl 0888.49007
[3] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331, 506-515 (2007) · Zbl 1122.47056
[4] Combettes, P. L.; Hirstoaga, S. A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6, 117-136 (2005) · Zbl 1109.90079
[5] Flam, S. D.; Antipin, A. S., Equilibrium programming using proximal-link algorithms, Math. Program., 78, 29-41 (1997) · Zbl 0890.90150
[6] Jung, J. S., Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, Appl. Math. Comput., 213, 498-505 (2009) · Zbl 1175.65068
[7] Jung, J. S., Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, J. Comput. Anal. Appl., 12, 1-A, 124-140 (2010) · Zbl 1208.47067
[8] Browder, F. E.; Petryshyn, W. V., Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20, 197-228 (1967) · Zbl 0153.45701
[9] Liu, F.; Nashed, M. Z., Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal., 6, 313-344 (1998) · Zbl 0924.49009
[10] Qin, X. L.; Cho, Y. J.; Kang, S. M.; Shang, M., A hybrid iterative scheme for asymptotically k-strictly pseudocontractions in Hilbert spaces, Nonlinear Anal., 70, 1902-1911 (2009) · Zbl 1309.47079
[11] Sahu, D. R.; Xu, H. K.; Yao, J. C., Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Anal., 70, 3502-3511 (2009) · Zbl 1221.47122
[12] Hu, C. S.; Cai, G., Convergence theorems for equilibrium problems and fixed point problems of a finite family of asymptotically k-strictly pseudocontractive mappings in the intermediate sense, Comput. Math. Appl., 61 (2010)
[13] Duan, P.; Zhao, J., Strong convergence theorems for system of equilibrium problems and asymptotically strict pseudocontractions in the intermediate sense, Fixed Point Theory Appl. (2011) · Zbl 1390.47017
[14] Qin, X.; Lin, L.-J.; Kang, S. M., On a generalized Ky Fan inequality and asymptotically strict pseudocontractions in the intermediate sense, J. Optim. Theory Appl., 150, 553-579 (2011) · Zbl 1231.90380
[15] Geobel, K.; Kirk, W. A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35, 171-174 (1972) · Zbl 0256.47045
[16] Kirk, W. A., Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Isr. J. Math., 17, 339-346 (1974) · Zbl 0286.47034
[17] Bruck, R. E.; Kuczumow, T.; Reich, S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniformly opial property, Colloq. Math., 65, 169-179 (1993) · Zbl 0849.47030
[18] Xu, H. K., Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal., 16, 1139-1146 (1991) · Zbl 0747.47041
[19] Kim, T. H.; Xu, H. K., Convergence of the modified Mann’s iteration method for asymptotically strict pseudocontractions, Nonlinear Anal., 68, 2828-2836 (2008) · Zbl 1220.47100
[20] Qihou, L., Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26, 1835-1842 (1996) · Zbl 0861.47047
[21] Schu, J., Iterative constriction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158, 407-413 (1991) · Zbl 0734.47036
[22] Takahashi, W.; Toyoda, M., Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118, 417-428 (2003) · Zbl 1055.47052
[23] Combettes, P. L.; Hirstoaga, S. A., Equilibrium programming using proximal-like algorithms, Math. Program., 78, 29-41 (1997) · Zbl 0890.90150
[24] Peng, J. W.; Yao, J. C., A new hybrid-extragradient method for generalized mixed equilibrium problems and fixed point problems and variational inequality problems, Taiwanese J. Math., 12, 6, 1401-1432 (2008) · Zbl 1185.47079
[25] Peng, J. W.; Yao, J. C., Two extragradient methods for generalized mixed equilibrium problems, nonexpansive mappings and monotone mappings, Comput. Math. Appl., 58, 1287-1301 (2009) · Zbl 1189.90192
[26] P. Kumam, C. Jaiboon, A system of generalized mixed equilibrium problems and fixed point problems for pseudocontractions mappings in Hilbert space, Fixed Point Theory Appl. vol. 2010, Article ID 361512, 2010, p. 33.; P. Kumam, C. Jaiboon, A system of generalized mixed equilibrium problems and fixed point problems for pseudocontractions mappings in Hilbert space, Fixed Point Theory Appl. vol. 2010, Article ID 361512, 2010, p. 33. · Zbl 1205.47061
[27] Martinez, C. Y.; Xu, H. K., Strong convergence theorem of the CQ method for fixed point processes, Nonlinear Anal., 64, 2400-2411 (2006) · Zbl 1105.47060
[28] Rockafellar, R. T., On the maximality of sums of nonlinear monotone operators, Trans. Am. Math. Soc., 149, 75-88 (1970) · Zbl 0222.47017
[29] Chang, S.-s.; Chan, C. K.; Joseph Lee, H. W.; Yang, L., A system of mixed equilibrium problems, fixed point problems of strictly pseudo-contractive mappings and nonexpansive semi-groups, Appl. Math. Comput., 216, 1, 51-60 (2010) · Zbl 1191.65061
[30] Chang, S.-s.; Chan, C. K.; Joseph Lee, H. W., Modified block iterative algorithm for Quasi-\( \varphi \)-asymptotically nonexpansive mappings and equilibrium problem in banach spaces, Appl. Math. Comput., 217, 18, 7520-7530 (2011) · Zbl 1221.65132
[31] Chang, S.-s.; Chan, C. K.; Joseph Lee, H. W.; ai Liu, J., Strong convergence theorems for countable families of asymptotically relatively nonexpansive mappings with applications, Appl. Math. Comput., 218, 7, 3187-3198 (2011) · Zbl 1470.47055
[32] Cholamjiak, P.; Suantai, S., An iterative method for equilibrium problems and a finite family of relatively nonexpansive mappings in a Banach space, Appl. Math. Comput., 217, 8, 3825-3831 (2010) · Zbl 1368.47052
[33] Dong, Q.-L.; He, S.; Zhao, J., Convergence theorems of shrinking projection methods for equilibrium problem, variational inequality problem and a finite family of relatively quasi-nonexpansive mappings, Appl. Math. Comput., 217, 24, 10256-10266 (2011) · Zbl 1368.47056
[34] Jung, J. S., Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, Appl. Math. Comput., 213, 2, 498-505 (2009) · Zbl 1175.65068
[35] Kazmi, K. R.; Rizvi, S. H., A hybrid extragradient method for approximating the common solutions of a variational inequality, a system of variational inequalities, a mixed equilibrium problem and a fixed point problem, Appl. Math. Comput., 218, 9, 5439-5452 (2012) · Zbl 1246.65099
[36] Ofoedu, E. U.; Shehu, Y., Convergence analysis for finite family of relatively quasi nonexpansive mappings and systems of equilibrium problems, Appl. Math. Comput., 217, 22, 9142-9150 (2011) · Zbl 1308.47074
[37] Plubtieng, S.; Punpaeng, R., A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. Math. Comput., 197, 2, 548-558 (2008) · Zbl 1154.47053
[38] Qin, X.; Cho, S. Y.; Kang, S. M., Some results on generalized equilibrium problems involving a family of nonexpansive mappings, Appl. Math. Comput., 217, 7, 3113-3126 (2010) · Zbl 1211.65084
[39] Saewan, S.; Kumam, P., Convergence theorems for mixed equilibrium problems, variational inequality problem and uniformly quasi-\( \varphi \)-asymptotically nonexpansive mappings, Appl. Math. Comput., 218, 7, 3522-3538 (2011) · Zbl 1246.65085
[40] Shehu, Y., Strong convergence theorems for infinite family of relatively quasi nonexpansive mappings and systems of equilibrium problems, Appl. Math. Comput., 218, 9, 5146-5156 (2012) · Zbl 1296.47089
[41] Wang, S.; Hu, C.; Chai, G., Strong convergence of a new composite iterative method for equilibrium problems and fixed point problems, Appl. Math. Comput., 215, 11, 3891-3898 (2010) · Zbl 1225.47116
[42] Yang, L.; Zhao, F.; Kim, J. K., Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi-\( \varphi \)-nonexpansive mappings in Banach spaces, Appl. Math. Comput., 218, 10, 6072-6082 (2012) · Zbl 1246.65086
[43] Zegeye, H.; Ofoedu, E. U.; Shahzad, N., Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings, Appl. Math. Comput., 216, 12, 3439-3449 (2010) · Zbl 1198.65100
[44] Zhao, J.; He, S., A new iterative method for equilibrium problems and fixed point problems of infinitely nonexpansive mappings and monotone mappings, Appl. Math. Comput., 215, 2, 670-680 (2009) · Zbl 1179.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.