×

Hydrodynamics of the Kuramoto-Vicsek model of rotating self-propelled particles. (English) Zbl 1285.35120

The authors consider a system of \(N\) particles moving with constant speed \( c\in \mathbb{R}^{2}\). Let \((X_{k}(t),V_{k}(t))_{k=1,\cdots ,N}\) be the positions and normalized velocities of the particles. The authors assume that the particle \(k\) is submitted to its proper angular velocity \(W_{k}\), to independent Brownian white noises \(P_{V_{k}^{\perp }}\circ (\sqrt{2D} dB_{t}^{k})\) and finally that it relaxes towards the neighbors’ average velocity \(\overline{V}_{k}\). The authors thus obtain the stochastic coupled system of equations \[ \begin{aligned} &\frac{dX_{k}}{dt}=cV_{k}, \\ &dV_{k}=P_{V_{k}^{\perp }}\circ (\nu \overline{V}_{k}dt+\sqrt{2D}dB_{t})+W_{k}V_{k}^{\perp }dt.\end{aligned} \] Considering the case where the number \(N\) of particles increases to infinity, they end with the Fokker-Planck equation \[ \partial _{t}f^{\varepsilon }+\nabla _{x}\cdot (vf^{\varepsilon })+\frac{1}{\eta } W\nabla _{v}\cdot (v^{\perp }f^{\varepsilon })=\frac{1}{\varepsilon } Q(f^{\varepsilon })=\frac{1}{\varepsilon }(-\nabla _{v}\cdot (P_{v^{\perp }} \overline{v}_{f^{\varepsilon }}^{\varepsilon }f^{\varepsilon }=+d\Delta _{v}f^{\varepsilon }). \] Considering first \(\eta =1\), the authors give the structure of the limit \(f^{0}\) of \(f^{\varepsilon }\) assuming that this limit \(f^{0}\) exists and that the convergence is as regular as needed. A quite similar result if then proved assuming now that \(\eta =\varepsilon \). The authors study the limit problem which is obtained in this case, leading to a new hydrodynamical model. In the last part of their paper, the authors consider the case where \(\eta =\varepsilon \zeta \) and they describe the limit problem which is here obtained and study its dependence with respect to \(\zeta \). The paper is completed with four appendices giving either the proofs of intermediate results or graphical representations.

MSC:

35Q84 Fokker-Planck equations
35L60 First-order nonlinear hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
82C22 Interacting particle systems in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
92D50 Animal behavior

References:

[1] Acebrón, J. A.et al., Rev. Mod. Phys.77, 137 (2005).
[2] Aldana, M.et al., Phys. Rev. Lett.98, 095702 (2007), DOI: 10.1103/PhysRevLett.98.095702.
[3] Aoki, I., Bull. Jpn. Soc. Sci. Fisheries48, 1081 (1982), DOI: 10.2331/suisan.48.1081.
[4] A. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discr. Contin. Dynam. Syst. Ser. B, to appear. · Zbl 1304.35412
[5] Baskaran, A.Marchetti, M. C., Phys. Rev. E77, 011920 (2008), DOI: 10.1103/PhysRevE.77.011920.
[6] Baskaran, A.Marchetti, M. C., J. Stat. Mech. Theory Exp.P04019 (2010). · Zbl 1504.82039
[7] Bellomo, N.Soler, J., Math. Models Methods Appl. Sci.22, 1140006 (2012), DOI: 10.1142/S0218202511400069. · Zbl 1242.92065
[8] Bertin, E.Droz, M.Grégoire, G., J. Phys. A: Math. Theor.42, 445001 (2009), DOI: 10.1088/1751-8113/42/44/445001.
[9] Bertini, L.Giacomin, G.Pakdaman, K., J. Statist. Phys.138, 270 (2010), DOI: 10.1007/s10955-009-9908-9.
[10] L. Bertini, G. Giacomin and C. Poquet, Synchronization and random long time dynamics for mean-field plane rotators, preprint, arXiv:1209.4537.
[11] Bolley, F.Cañizo, J. A.Carrillo, J. A., Appl. Math. Lett.25, 339 (2011), DOI: 10.1016/j.aml.2011.09.011.
[12] Bolley, F.Cañizo, J. A.Carrillo, J. A., Math. Models Methods Appl. Sci.21, 2179 (2011), DOI: 10.1142/S0218202511005702. · Zbl 1273.82041
[13] Carrillo, J. A.et al., SIAM J. Math. Anal.42, 218 (2010), DOI: 10.1137/090757290.
[14] Chaté, H.et al., Phys. Rev. E77, 046113 (2008).
[15] Chen, Z.Zhang, H. T., Automatica47, 1929 (2011), DOI: 10.1016/j.automatica.2011.03.012.
[16] Chepizhko, A. A.Kulinskii, V. L., Physica A389, 5347 (2010), DOI: 10.1016/j.physa.2010.08.016.
[17] Chuang, Y.-L.et al., Physica D232, 33 (2007), DOI: 10.1016/j.physd.2007.05.007.
[18] Couzin, I. D.et al., J. Theor. Biol.218, 1 (2002), DOI: 10.1006/jtbi.2002.3065.
[19] Cucker, F.Smale, S., IEEE Trans. Automatic Control52, 852 (2007), DOI: 10.1109/TAC.2007.895842.
[20] Cziròk, A.et al., Phys. Rev. E54, 1791 (1996).
[21] Cziròk, A.Vicsek, T., Physica A281, 17 (2000).
[22] P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci., appeared online. · Zbl 1275.35019
[23] Degond, P.; Frouvelle, A.; Liu, J.-G., A note on phase transitions for the Smoluchowski equation with dipolar potential, Hyp2012 —The 14th Int. Conf. on Hyperbolic Problems, 2012
[24] P. Degond, A. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, arXiv:1304.2929.
[25] P. Degond, A. Frouvelle, J.-G. Liu, S. Motsch and L. Navoret, Macroscopic models of collective motion and self-organization, arXiv:1304.6040.
[26] P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods Appl. Anal., to appear. · Zbl 1278.35153
[27] Degond, P.Motsch, S., Math. Models Methods Appl. Sci.18, 1193 (2008), DOI: 10.1142/S0218202508003005.
[28] Degond, P.Motsch, S., J. Statist. Phys.131, 989 (2008), DOI: 10.1007/s10955-008-9529-8.
[29] Degond, P.Motsch, S., J. Statist. Phys.143, 685 (2011), DOI: 10.1007/s10955-011-0201-3.
[30] Dunstan, J.et al., Phys. Fluids24, 011901 (2012), DOI: 10.1063/1.3676245.
[31] Durham, W. M.Climent, E.Stocker, R., Phys. Rev. Lett.106, 238102 (2011), DOI: 10.1103/PhysRevLett.106.238102.
[32] Durham, W. M.Kessler, J. O.Stocker, R., Science323, 1067 (2009), DOI: 10.1126/science.1167334.
[33] Fornasier, M.Haskovec, J.Toscani, G., Physica D240, 21 (2011), DOI: 10.1016/j.physd.2010.08.003.
[34] Frouvelle, A., Math. Models Methods Appl. Sci.22, 1250011 (2012), DOI: 10.1142/S021820251250011X.
[35] Frouvelle, A.Liu, J.-G., SIAM J. Math. Anal.44, 791 (2012), DOI: 10.1137/110823912.
[36] Gautrais, J.et al., PLoS Comput. Biol.8, e1002678 (2012), DOI: 10.1371/journal.pcbi.1002678.
[37] Gautrais, J.et al., J. Math. Biol.58, 429 (2009), DOI: 10.1007/s00285-008-0198-7.
[38] G. Giacomin, E. Luçon and C. Poquet, Coherence stability and effect of random natural frequencies in populations of coupled oscillators, arXiv:1111.3581.
[39] Giacomin, G.et al., SIAM J. Math. Anal.44, 4165 (2012), DOI: 10.1137/110846452.
[40] Grégoire, G.Chaté, H., Phys. Rev. Lett.92, 025702 (2004).
[41] Ha, S.-Y.et al., Quart. Appl. Math.69, 91 (2011).
[42] Ha, S.-Y.Liu, J.-G., Commun. Math. Sci.7, 297 (2009), DOI: 10.4310/CMS.2009.v7.n2.a2.
[43] Ha, S.-Y.Tadmor, E., Kinetic Relat. Models1, 415 (2008). · Zbl 1402.76108
[44] Henkes, S.Fily, Y.Marchetti, M. C., Phys. Rev. E84, 040301 (2011), DOI: 10.1103/PhysRevE.84.040301.
[45] Hsu, E. P., Stochastic Analysis on Manifolds, 2002, Amer. Math. Soc. · Zbl 0994.58019
[46] Jeffrey, G. B., Proc. Roy. Soc. London Ser A.102, 161 (1922).
[47] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence, 1984, Springer · Zbl 0558.76051
[48] Lauga, E.et al., Biophys. J.90, 400 (2006), DOI: 10.1529/biophysj.105.069401.
[49] E. Lucon, Large time asymptotics for the fluctuation SPDE in the Kuramoto synchronization model, arXiv:1204.2176.
[50] Mogilner, A.et al., J. Math. Biol.47, 353 (2003), DOI: 10.1007/s00285-003-0209-7.
[51] Motsch, S.Navoret, L., Multiscale Model. Simulat.9, 1253 (2011), DOI: 10.1137/100794067.
[52] Motsch, S.Tadmor, E., J. Statist. Phys.144, 923 (2011), DOI: 10.1007/s10955-011-0285-9.
[53] Paley, D. A.et al., IEEE Control Syst. Magn.27, 89 (2007), DOI: 10.1109/MCS.2007.384123.
[54] Peruani, F.Deutsch, A.Bär, M., Phys. Rev. E74, 030904 (2006), DOI: 10.1103/PhysRevE.74.030904.
[55] Peruani, F.Nicola, E. M.Morelli, L. G., New J. Phys.12, 093029 (2010), DOI: 10.1088/1367-2630/12/9/093029.
[56] Ratushnaya, V. I.et al., Physica A381, 39 (2007), DOI: 10.1016/j.physa.2007.03.045.
[57] Riedel, I. H.Kruse, K.Howard, J., Science309, 300 (2005), DOI: 10.1126/science.1110329.
[58] Sepulchre, R.Paley, D. A.Ehrich Leonard, N., IEEE Trans. Automat. Control53, 706 (2008), DOI: 10.1109/TAC.2008.919857.
[59] Toner, J.Tu, Y., Phys. Rev. Lett.75, 4326 (1995), DOI: 10.1103/PhysRevLett.75.4326.
[60] Toner, J.Tu, Y.Ramaswamy, S., Ann. Phys.318, 170 (2005), DOI: 10.1016/j.aop.2005.04.011. · Zbl 1126.82347
[61] Tu, Y.Toner, J.Ulm, M., Phys. Rev. Lett.80, 4819 (1998), DOI: 10.1103/PhysRevLett.80.4819.
[62] Vicsek, T.et al., Phys. Rev. Lett.75, 1226 (1995), DOI: 10.1103/PhysRevLett.75.1226.
[63] Vicsek, T.Zafeiris, A., Phys. Rep.517, 71 (2012), DOI: 10.1016/j.physrep.2012.03.004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.