×

Periodicity of complementing multisets. (English) Zbl 1285.11047

Summary: Let \(A\) be a finite multiset of integers. If \(B\) be a multiset such that \(A\) and \(B\) are \(t\)-complementing multisets of integers, then \(B\) is periodic. We obtain the Biró-type upper bound for the smallest such period of \(B\) [A. Biró, Acta Arith. 118, No. 2, 117–127 (2005; Zbl 1088.11016)]: Let \(\varepsilon>0\). We assume that \(\text{diam}(A)\geq n_{0}(\varepsilon)\) and that \(\sum_{a\in A}w_{A(a)}\leq (\text{diam}(A)+1)^{c}\), where \(c\) is any constant such that \(c< 100\log2-2\). Then \(B\) is periodic with period \(\log k\leq (\text{diam}(A)+1)^{\frac{1}{3}+\varepsilon}\).

MSC:

11B75 Other combinatorial number theory

Citations:

Zbl 1088.11016

References:

[1] A. Biró, Divisibility of integer polynomials and tilings of the integers , Acta Arith. 118 (2005), no. 2, 117-127. · Zbl 1088.11016 · doi:10.4064/aa118-2-2
[2] M.N. Kolountzakis, Translational tilings of the integers with long periods , Electron. J. Combin. 10 (2003), Research Paper 22, 9 pp. (electronic). · Zbl 1107.11016
[3] M.B. Nathanson, Problems in additive number theory, II: Linear forms and complementing sets of integers , Journal de Théorie des Nombres de Bordeaux 21 (2009), no.2, 343-355. · Zbl 1239.11025 · doi:10.5802/jtnb.675
[4] D.J. Newman, Tesselation of integers , J. Number Theory 9 (1977), no. 1, 10-111. · Zbl 0348.10038 · doi:10.1016/0022-314X(77)90054-3
[5] R. Tijdeman, Periodicity and almost-periodicity, More Sets, Graphs and Numbers , Bolyai Soc. Math. Stud. 15 , Springer, Berlin, 2006, 381-405. · Zbl 1103.68103 · doi:10.1007/978-3-540-32439-3_18
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.