×

Operator algebra of free conformal currents via twistors. (English) Zbl 1284.81169

Summary: Operator algebra of (not necessarily free) higher-spin conformal conserved currents in generalized matrix spaces, that include 3d Minkowski space-time as a particular case, is shown to be determined by an associative algebra \(M\) of functions on the twistor space. For free conserved currents, \(M\) is the universal enveloping algebra of the higher-spin algebra. Proposed construction greatly simplifies computation and analysis of correlators of conserved currents. Generating function for \(n\)-point functions of 3d (super)currents of all spins, built from \(N\) free constituent massless scalars and spinors, is obtained in a concise form of certain determinant. Our results agree with and extend earlier bulk computations in the HS \(AdS_4/CFT_3\) framework. Generating function for \(n\)-point functions of 4d conformal currents is also presented.

MSC:

81R40 Symmetry breaking in quantum theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
15A66 Clifford algebras, spinors

References:

[1] Fronsdal, C., Massless particles, ortosymplectic symmetry and another type of Kaluza-Klein theory, (Essays on Supersymmetry. Essays on Supersymmetry, Math. Phys. Stud., vol. 8 (1986), Reidel), preprint, UCLA/85/TEP/10
[2] Bandos, I.; Lukierski, J., Mod. Phys. Lett. A, 14, 1257 (1999)
[3] Bandos, I. A.; Lukierski, J.; Sorokin, D. P., Phys. Rev. D, 61, 045002 (2000)
[4] Vasiliev, M. A., Phys. Rev. D, 66, 066006 (2002)
[5] Vasiliev, M. A., Relativity, causality, locality, quantization and duality in the \(Sp(2 M)\) invariant generalized space-time, (Olshanetsky, M.; Vainshtein, A., Multiple Facets of Quantization and Supersymmetry: Michael Marinov Memorial Volume (2002), World Scientific) · Zbl 1047.81070
[6] Bandos, I.; Bekaert, X.; de Azcarraga, J. A.; Sorokin, D.; Tsulaia, M., J. High Energy Phys., 0505, 031 (2005)
[7] Osborn, H.; Petkou, A. C., Ann. Phys., 231, 311 (1994) · Zbl 0795.53073
[8] Petkou, A. C., J. High Energy Phys., 0303, 049 (2003)
[9] Giombi, S.; Prakash, S.; Yin, X., J. High Energy Phys., 1307, 105 (2013)
[10] Costa, M. S.; Penedones, J.; Poland, D.; Rychkov, S., J. High Energy Phys., 1111, 071 (2011)
[11] Giombi, S.; Yin, X., J. Phys. A, 46, 214003 (2013) · Zbl 1276.81097
[12] Stanev, Y. S., Nucl. Phys. B, 865, 200 (2012) · Zbl 1262.81166
[13] Zhiboedov, A.
[14] Colombo, N.; Sundell, P.
[15] Didenko, V. E.; Skvortsov, E. D.
[16] Vasiliev, M. A., Class. Quantum Gravity, 30, 104006 (2013) · Zbl 1269.83052
[17] Gelfond, O. A.; Vasiliev, M. A., Theor. Math. Phys., 145, 35 (2005) · Zbl 1178.81207
[18] Colombo, N.; Sundell, P., J. High Energy Phys., 1111, 042 (2011)
[19] Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 550, 213 (2002) · Zbl 1001.81057
[20] Vasiliev, M. A., Phys. Lett. B, 285, 225 (1992)
[21] Sezgin, E.; Sundell, P., J. High Energy Phys., 0507, 044 (2005)
[22] Maldacena, J.; Zhiboedov, A., J. Phys. A, 46, 214011 (2013) · Zbl 1339.81089
[23] Maldacena, J.; Zhiboedov, A., Class. Quantum Gravity, 30 (2013)
[24] Vasiliev, M. A., J. Phys. A, 46, 214013 (2013) · Zbl 1269.81151
[25] Shaynkman, O. V.; Vasiliev, M. A., Theor. Math. Phys.. Theor. Math. Phys., Teor. Mat. Fiz., 128, 378 (2001) · Zbl 1037.81088
[26] Vasiliev, M. A., Ann. Phys. (NY), 190, 59 (1989) · Zbl 0661.53062
[27] Bekaert, X.; Cnockaert, S.; Iazeolla, C.; Vasiliev, M. A.
[28] Gelfond, O. A.; Vasiliev, M. A., J. High Energy Phys., 0903, 125 (2009)
[29] Siegel, C. L., Sympletic Geometry (1964), Academic Press · Zbl 0138.31403
[30] Mumford, D., Tata Lectures on Theta, vol. I, 1983, vol. II (1984), Birkhäuser: Birkhäuser Boston-Basel-Stuttgart · Zbl 0509.14049
[31] Leigh, R. G.; Petkou, A. C.
[32] Jevicki, A.; Jin, K.; Ye, Q., J. Phys. A, 46, 214005 (2013)
[33] Nikolov, N. M.; Stanev, Y. S.; Todorov, I. T., J. Phys. A, 35, 2985 (2002) · Zbl 1041.81097
[34] Gelfond, O. A.; Vasiliev, M. A.
[35] Vasiliev, M. A., Russ. Phys. J.. Russ. Phys. J., Izv. Vuz. Fiz., 45, 7, 23 (2002)
[36] Vasiliev, M. A., Fortschr. Phys., 36, 33 (1988)
[37] Fradkin, E. S.; Vasiliev, M. A., Int. J. Mod. Phys. A, 3, 2983 (1988)
[38] Konstein, S. E.; Vasiliev, M. A., Nucl. Phys. B, 331, 475 (1990)
[39] Berezin, F. A.; Shubin, M. A., Schrödinger Equation (1983), Moscow University Edition · Zbl 0546.35002
[40] Didenko, V. E.; Vasiliev, M. A., Phys. Lett. B, 682, 305 (2009)
[41] Prokushkin, S. F.; Vasiliev, M. A., Nucl. Phys. B, 545, 385 (1999) · Zbl 0944.81022
[43] Gaberdiel, M. R.; Gopakumar, R., J. Phys. A, 46, 214002 (2013) · Zbl 1276.81125
[44] Arkani-Hamed, N.; Bourjaily, J. L.; Cachazo, F.; Goncharov, A. B.; Postnikov, A.; Trnka, J.
[45] Vasiliev, M. A., Int. J. Geom. Methods Mod. Phys., 3, 37 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.