×

The Hamiltonian structure of a coupled system derived from a supersymmetric breaking of super Korteweg-de Vries equations. (English) Zbl 1284.81148

Summary: A supersymmetric breaking procedure for \(N = 1\) super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac’s method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.{
©2013 American Institute of Physics}

MSC:

81Q60 Supersymmetry and quantum mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
81R40 Symmetry breaking in quantum theory

References:

[1] Ito, M., Phys. Lett. A, 91, 335-338 (1982) · doi:10.1016/0375-9601(82)90426-1
[2] Hirota, R.; Satsuma, J., Phys. Lett. A, 85, 407-408 (1981) · doi:10.1016/0375-9601(81)90423-0
[3] Yang, J.-R.; Mao, J.-J., Commun. Theor. Phys., 49, 22-26 (2008) · Zbl 1392.37059 · doi:10.1088/0253-6102/49/1/04
[4] Mogorosi, E. T.; Muatjetjeja, B.; Khalique, C. M., Boundary Value Probl., 150 (2012) · Zbl 1278.35199 · doi:10.1186/1687-2770-2012-150
[5] Wang, D. S., Appl. Math. Comp., 216, 1349-1354 (2010) · Zbl 1191.37036 · doi:10.1016/j.amc.2010.02.030
[6] Mathieu, P., J. Math. Phys., 29, 2499 (1988) · Zbl 0665.35076 · doi:10.1063/1.528090
[7] Labelle, P.; Mathieu, P., J. Math. Phys., 32, 923-927 (1991) · Zbl 0736.35100 · doi:10.1063/1.529351
[8] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., J. Math. Phys., 9, 1204 (1968) · Zbl 0283.35019 · doi:10.1063/1.1664701
[9] Mathieu, P., Phys. Lett. B, 203, 287-291 (1988) · doi:10.1016/0370-2693(88)90554-0
[10] Dargis, P.; Mathieu, P., Phys. Lett. A, 176, 67-74 (1993) · doi:10.1016/0375-9601(93)90318-T
[11] Andrea, S.; Restuccia, A.; Sotomayor, A., J. Math. Phys., 46, 103517 (2005) · Zbl 1111.37049 · doi:10.1063/1.2073289
[12] Andrea, S.; Restuccia, A.; Sotomayor, A., Phys. Lett. A, 376, 245-251 (2012) · Zbl 1255.81166 · doi:10.1016/j.physleta.2011.10.060
[13] Andrea, S.; Restuccia, A.; Sotomayor, A., J. Math. Phys., 42, 2625 (2001) · Zbl 1061.35102 · doi:10.1063/1.1368139
[14] Gao, X. N.; Lou, S. Y., Phys. Lett. B, 707, 209 (2012) · doi:10.1016/j.physletb.2011.12.021
[15] Gao, X. N.; Lou, S. Y.; Tang, X. Y., J. High Energy Phys., 5, 029 (2013) · Zbl 1342.81583 · doi:10.1007/JHEP05(2013)029
[16] Ren, B.; Lin, J.; Yu, J., Aip Advances, 3, 042129 (2013) · doi:10.1063/1.4802969
[17] Seiberg, N., J. High Energy Phys., 6, 010 (2003) · doi:10.1088/1126-6708/2003/06/010
[18] Dirac, P. A. M., Lectures on Quantum Mechanics, 2 (1964) · Zbl 0141.44603
[19] Nutku, Y., J. Math. Phys., 25, 6, 2007 (1984) · doi:10.1063/1.526395
[20] Kentwell, G. W., J. Math. Phys., 29, 46 (1988) · Zbl 0653.76010 · doi:10.1063/1.528133
[21] Gervais, J. L.; Neveau, A., Nucl. Phys. B, 209, 125 (1982) · doi:10.1016/0550-3213(82)90105-5
[22] Nam, S., Phys. Lett. B, 172, 323 (1986) · doi:10.1016/0370-2693(86)90261-3
[23] Benjamin, T. B., Proc. R. Soc. Lond. A, 328, 153-183 (1972) · doi:10.1098/rspa.1972.0074
[24] Bona, J., Proc. R. Soc. Lond. A, 344, 363-374 (1975) · Zbl 0328.76016 · doi:10.1098/rspa.1975.0106
[25] Olver, P. J.; Sokolov, V. V., Commun. Math. Phys., 193, 2, 245-268 (1998) · Zbl 0908.35124 · doi:10.1007/s002200050328
[26] Svinolupov, S. I.; Sokolov, V. V., Theor. Math. Phys. B, 100, 959-962 (1994) · Zbl 0875.35121 · doi:10.1007/BF01016758
[27] Foursov, M. V., J. Math. Phys., 44, 3088 (2003) · Zbl 1062.37068 · doi:10.1063/1.1580998
[28] Sotomayor, A.; Restuccia, A., J. Phys.: Conf. Ser., 410, 012073 (2013) · doi:10.1088/1742-6596/410/1/012073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.