×

Emergence of complex and spinor wave functions in scale relativity. I: Nature of scale variables. (English) Zbl 1284.81015

Summary: One of the main results of scale relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The scale relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamental two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schrödinger equation can be derived.{
©2013 American Institute of Physics}

MSC:

81P05 General and philosophical questions in quantum theory
81R25 Spinor and twistor methods applied to problems in quantum theory

References:

[1] Ord, G. N., J. Phys. A: Math. Gen., 16, 1869 (1983) · doi:10.1088/0305-4470/16/9/012
[2] Nottale, L.; Schneider, J., J. Math. Phys., 25, 1296 (1984) · doi:10.1063/1.526285
[3] Nottale, L.; Célérier, M.-N., J. Phys. A: Math. Theor., 40, 14471 (2007) · Zbl 1126.81008 · doi:10.1088/1751-8113/40/48/012
[4] Nottale, L., Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (1993) · Zbl 0789.58003
[5] Célérier, M.-N.; Nottale, L., J. Phys. A: Math. Gen., 39, 12565 (2006) · Zbl 1106.81030 · doi:10.1088/0305-4470/39/40/020
[6] Célérier, M.-N.; Nottale, L., Electromagn. Phenom., 3, 83 (2003)
[7] Célérier, M.-N.; Nottale, L., J. Phys. A: Math. Gen., 37, 931 (2004) · Zbl 1098.81730 · doi:10.1088/0305-4470/37/3/026
[8] Cresson, J., J. Math. Phys., 44, 4907 (2003) · Zbl 1062.39022 · doi:10.1063/1.1618923
[9] Nottale, L.; Alonzo, J. Diaz; Paramo, M. Lorente, Relativity in general, Proceedings of the Spanish Relativity Meeting, Solas, 1993, 121-132 (1994) · Zbl 0863.58093
[10] Nottale, L., Chaos, Solitons & Fractals, 7, 877 (1996) · Zbl 1080.81525 · doi:10.1016/0960-0779(96)00002-1
[11] Nottale, L., Scale Relativity and Fractal Space-Time. A New Approach to Unifying Relativity and Quantum Mechanics (2011) · Zbl 1222.83004
[12] Célérier, M.-N., J. Math. Phys., 50, 123101 (2009) · Zbl 1372.81017 · doi:10.1063/1.3271040
[13] Célérier, M.-N.; Nottale, L., Emergence of complex and spinor wave functions in Scale Relativity. II. Lorentz invariance and bi-spinors, J. Math. Phys. · Zbl 1292.81003
[14] Adda, F. Ben; Cresson, J., Acad. Sci., Paris, C. R., 330, 261 (2000) · doi:10.1016/S0764-4442(00)00146-4
[15] Cresson, J., Chaos, Solitons & Fractals, 14, 553 (2002) · Zbl 1005.81031 · doi:10.1016/S0960-0779(01)00221-1
[16] Nottale, L., Adv. Appl. Clifford Algebras, 18, 917 (2008) · Zbl 1181.81053 · doi:10.1007/s00006-008-0108-5
[17] Postnikov, M., Leçons de Géométrie. Groupes et algèbres de Lie (1982)
[18] Cartan, E., Oeuvres Complètes (1953)
[19] Nottale, L., J. Phys. A: Math. Theor., 42, 275306 (2009) · Zbl 1167.81015 · doi:10.1088/1751-8113/42/27/275306
[20] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals (1965) · Zbl 0176.54902
[21] Nottale, L., Astron. Astrophys., 327, 867 (1997)
[22] Nottale, L.; Schumacher, G.; Lefèvre, E. T., Astron. Astrophys., 361, 379 (2000)
[23] Da Rocha, D.; Nottale, L., Chaos, Solitons & Fractals, 16, 565 (2003) · Zbl 1035.83021 · doi:10.1016/S0960-0779(02)00223-0
[24] Nottale, L.; Célérier, M.-N.; Lehner, T., J. Math. Phys., 47, 032303 (2006) · Zbl 1111.81119 · doi:10.1063/1.2176915
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.