×

Bifurcations of relative equilibria for one spheroidal and two spherical bodies. (English) Zbl 1284.70016

Summary: We discuss existence and bifurcations of non-collinear (Lagrangian) relative equilibria in a generalized three body problem. Specifically, one of the bodies is a spheroid (oblate or prolate) with its equatorial plane coincident with the plane of motion where only the “\(J_2\)” term from its potential expansion is retained.
We describe the bifurcations of relative equilibria as function of two parameters: \(J_2\) and the angular velocity of the system formed by the mass centers. We offer the values of the parameters where bifurcations in shape occur and discuss their physical meaning. We conclude with a general theorem on the number and the shape of relative equilibria.

MSC:

70F05 Two-body problems
70K50 Bifurcations and instability for nonlinear problems in mechanics
70F15 Celestial mechanics
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Arredondo, J.A., Guo, J., Stoica, C., Tamayo, C.: On the restricted three body problem with oblate primaries 2012. 341, 315 (2012) · Zbl 1284.70018
[2] Bellerose, J.: The restricted full three body problem: applications to binary asteroid exploration. PhD thesis, University of Michigan (2008)
[3] Bellerose, J., Scheeres, D.J.: Celest. Mech. Dyn. Astron. 100, 63 (2008) · Zbl 1334.70022 · doi:10.1007/s10569-007-9108-3
[4] Boué, G., Laskar, J.: Precession of a planet with a satellite. Icarus 185, 312 (2006) · doi:10.1016/j.icarus.2006.07.019
[5] Cosson, F., Elmabsout, B.: Relative equilibrium in the three-body problem with a rigid body. Celest. Mech. Dyn. Astron. 69, 293 (1998) · Zbl 0921.70007
[6] Duboshin, G.N.: Sur les solutions particulières du problème généralisé des trois corps solides. Celest. Mech. Dyn. Astron. 8, 495 (1974) · Zbl 0297.70005 · doi:10.1007/BF01227801
[7] Duboshin, G.N.: Sur le probleme des trois corps solides (on the problem of three rigid bodies). Celest. Mech. Dyn. Astron. 33, 31 (1984) · Zbl 0572.70005 · doi:10.1007/BF01231093
[8] Florides, P.S., Spyrou, N.K.: Steadily rotating perfect-fluid gravitating prolate spheroids in Newtonian theory. Astrophys. J. 419, 541 (1993) · doi:10.1086/173506
[9] Florides, P.S., Spyrou, N.K.: A model of a steadily rotating prolate galaxy in Newtonian theory. Astron. Astrophys. 361, 53 (2000)
[10] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983) · Zbl 0515.34001
[11] Guirao, J.L.G., Vera, J.A.: Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability. J. Phys. A, Math. Theor. 43, 195203 (2010) · Zbl 1250.70010 · doi:10.1088/1751-8113/43/19/195203
[12] Koon, W.S., Marsden, J.E., Ross, S., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N.Y. Acad. Sci. 1017, 11 (2004) · doi:10.1196/annals.1311.002
[13] Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1996) · Zbl 0883.70007 · doi:10.1007/BF00691912
[14] Marsden, J.E.: Lectures on Mechanics. London Math. Soc. Lecture Notes Series, vol. 174. Cambridge University Press, Cambridge (1992) · Zbl 0744.70004
[15] Rodríguez-Olmos, M.: J. Nonlinear stability of Riemann ellipsoids with symmetric configurations. Nonlinear Sci. 19, 179 (2009) · Zbl 1179.37078 · doi:10.1007/s00332-008-9032-z
[16] Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83, 155 (2002) · Zbl 1027.70012 · doi:10.1023/A:1020143116091
[17] Sharma, R.K., Subba Rao, P.V.: Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid. Celest. Mech. Dyn. Astron. 13, 137 (1976) · Zbl 0336.70011 · doi:10.1007/BF01232721
[18] Sharma, R.K., Subba Rao, P.V.: Effect of oblateness on triangular solution at critical mass. Astrophys. Space Sci. 60, 247 (1979) · Zbl 0392.70010 · doi:10.1007/BF00644329
[19] Sharma, R.K., Taqvi, Z.A., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three-body problem when the primaries are triaxial rigid bodies. Celest. Mech. Dyn. Astron. 79, 119 (2001) · Zbl 0999.70010 · doi:10.1023/A:1011168605411
[20] Singh, J.: Combined effects of perturbations, radiation, and oblateness on the nonlinear stability of triangular points in the restricted three-body problem. Astrophys. Space Sci. 332, 331 (2011) · Zbl 1237.85009 · doi:10.1007/s10509-010-0546-0
[21] Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971) · Zbl 0226.70005
[22] Subba Rao, P.V., Sharma, R.K.: Effect of oblateness on the non-linear stability of L 4 in the restricted three-body problem. Celest. Mech. Dyn. Astron. 65, 291 (1997) · Zbl 0886.70011
[23] Tkhai, V.N.: A study of the plane unrestricted three-body problem. J. Appl. Math. Mech. 60, 349 (1996) · Zbl 0894.70008 · doi:10.1016/S0021-8928(96)00046-9
[24] Vidyakin, V.V.: Lagrangian and near-Lagrangian solutions of the translatory-rotary motion of the three-body problem. Celest. Mech. 77, 509 (1977) · Zbl 0374.70004 · doi:10.1007/BF01229291
[25] Zhuravlev, S.G., Petrutskii, A.A.: Current state of the problem of translational-rotational motion of three rigid bodies. Sov. Astron. 34, 299 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.