×

Consistency analysis of decision-making programs. (English) Zbl 1284.68386

Proceedings of the 41st ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’14, San Diego, CA, USA, January 22–24, 2014. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-4503-2544-8). 555-567 (2014).

MSC:

68Q60 Specification and verification (program logics, model checking, etc.)
68N30 Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.)
68M15 Reliability, testing and fault tolerance of networks and computer systems
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

References:

[1] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
[2] J. Bertrand and A. Miné. Apron: A library of numerical abstract domains for static analysis. In CAV, pages 661-667, 2009. 10.1007/978-3-642-02658-4_52
[3] François Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of Functional Programming, 2(04):407-435, 1992.
[4] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of programs. In POPL, pages 57-70, 2010. 10.1145/1706299.1706308 · Zbl 1312.68056
[5] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity and robustness s of programs. Commun. ACM, 55(8):107-115, 2012. 10.1145/2240236.2240262
[6] L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract domain to infer interval linear relationships. In SAS, 2009. 10.1007/978-3-642-03237-0_21 · Zbl 1248.68140
[7] M. De Berg, O. Cheong, and M. Van Kreveld. Computational geometry: algorithms and applications. Springer-Verlag, 2008. · Zbl 1140.68069
[8] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, 2000. · Zbl 0939.68134
[9] S. Devadoss and J. O’Rourke. Discrete and Computational Geometry. Princeton University Press, 2011. · Zbl 1232.52001
[10] S. Fortune. Stable maintenance of point set triangulations in two dimensions. In FOCS, pages 494-499, 1989. 10.1109/SFCS.1989.63524
[11] E. Goubault. Static analyses of the precision of floating-point operations. In SAS, pages 234-259, 2001. · Zbl 0997.68518
[12] Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett., 1(4):132-133, 1972. · Zbl 0236.68013
[13] J. Halpern. Reasoning about uncertainty. The MIT Press, 2003. · Zbl 1090.68105
[14] K. Hoder, N. Bjørner, and L. de Moura. μZ - an efficient engine for fixed points with constraints. In CAV, 2011.
[15] C. Hoffmann, J. Hopcroft, and M. Karasick. Towards implementing robust geometric computations. In SoCG, pages 106-117, 1988. 10.1145/73393.73405
[16] C. M. Hoffmann. The problems of accuracy and robustness in geometriccomputation. Computer, 22(3):31-39, 1989. 10.1109/2.16223
[17] D.E. Knuth. Axioms and Hulls (LNCS #606). Springer-Verlag, 1992.
[18] R. Majumdar, E. Render, and P. Tabuada. A theory of robust software synthesis. CoRR, abs/1108.3540, 2011.
[19] R. Majumdar and I. Saha. Symbolic robustness analysis. Real-Time Systems Symposium, IEEE International, 0:355-363, 2009. 10.1109/RTSS.2009.17
[20] K. Mehlhorn. The reliable algorithmic software challenge RASC, pages 255-263. 2003. · Zbl 1023.68884
[21] K. Mehlhorn and C. Yap. Robust geometric computation. http://cs.nyu.edu/≅yap/book/egc, 2011.
[22] D. Monniaux. The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst., 30(3), 2008. 10.1145/1353445.1353446
[23] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL: Intermediate language and tools for analysis and transformation of C programs. In CC, pages 213-228, 2002. · Zbl 1051.68756
[24] D. Pichardie and Y. Bertot. Formalizing convex hull algorithms. In TPHOLs, volume 2152 of LNCS, pages 346-361. Springer, 2001. · Zbl 1005.68557
[25] J. Reed and B. Pierce. Distance makes the types grow stronger: A calculus for differential privacy. In ICFP, 2010. 10.1145/1863543.1863568
[26] R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete & Computational Geometry, 18(3):305-363, 1997. · Zbl 0892.68098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.