×

Strong approximation results for the empirical process of stationary sequences. (English) Zbl 1284.60069

The authors prove a strong invariance principle for the sequential empirical process, i.e., an almost sure approximation of the centered and rescaled empirical distribution function by a Gaussian process. As corollaries, weak convergence of this process and a law of the iterated logarithm are obtained. The empirical distribution function is associated to a class of stationary, dependent sequences of random variables, using a dependence condition that is similar in spirit to absolute regularity, but it only involves indicators of half lines. No condition on the differentiability of the distribution function is needed and the assumption on the decay of the dependence coefficient is mild. The result can be applied to the sequence of iteration of an intermittend map, which has a neutral fixed point at the origin.

MSC:

60F17 Functional limit theorems; invariance principles
60G10 Stationary stochastic processes

References:

[1] Berkes, I., Hörmann, S. and Schauer, J. (2009). Asymptotic results for the empirical process of stationary sequences. Stochastic Process. Appl. 119 1298-1324. · Zbl 1161.60312 · doi:10.1016/j.spa.2008.06.010
[2] Berkes, I. and Philipp, W. (1977). An almost sure invariance principle for the empirical distribution function of mixing random variables. Z. Wahrsch. Verw. Gebiete 41 115-137. · Zbl 0349.60026 · doi:10.1007/BF00538416
[3] Bickel, P. J. and Wichura, M. J. (1971). Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 1656-1670. · Zbl 0265.60011 · doi:10.1214/aoms/1177693164
[4] Borovkova, S., Burton, R. and Dehling, H. (2001). Limit theorems for functionals of mixing processes with applications to \(U\)-statistics and dimension estimation. Trans. Amer. Math. Soc. 353 4261-4318. · Zbl 0980.60031 · doi:10.1090/S0002-9947-01-02819-7
[5] Castelle, N. and Laurent-Bonvalot, F. (1998). Strong approximations of bivariate uniform empirical processes. Ann. Inst. Henri Poincaré Probab. Stat. 34 425-480. · Zbl 0915.60048 · doi:10.1016/S0246-0203(98)80024-1
[6] Dedecker, J. (2010). An empirical central limit theorem for intermittent maps. Probab. Theory Related Fields 148 177-195. · Zbl 1203.60039 · doi:10.1007/s00440-009-0227-5
[7] Dedecker, J., Gouëzel, S. and Merlevède, F. (2010). Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 46 796-821. · Zbl 1206.60032 · doi:10.1214/09-AIHP343
[8] Dedecker, J. and Merlevède, F. (2010). On the almost sure invariance principle for stationary sequences of Hilbert-valued random variables. In Dependence in Probability , Analysis and Number Theory 157-175. Kendrick Press, Heber City, UT. · Zbl 1229.60037
[9] Dedecker, J., Prieur, C. and Raynaud De Fitte, P. (2006). Parametrized Kantorovich-Rubinštein theorem and application to the coupling of random variables. In Dependence in Probability and Statistics. Lecture Notes in Statistics 187 105-121. Springer, New York. · Zbl 1106.60027
[10] Dedecker, J. and Prieur, C. (2007). An empirical central limit theorem for dependent sequences. Stochastic Process. Appl. 117 121-142. · Zbl 1117.60035 · doi:10.1016/j.spa.2006.06.003
[11] Dedecker, J. and Prieur, C. (2009). Some unbounded functions of intermittent maps for which the central limit theorem holds. ALEA Lat. Am. J. Probab. Math. Stat. 5 29-45. · Zbl 1160.37354
[12] Dedecker, J., Doukhan, P., Lang, G., León R., J. R., Louhichi, S. and Prieur, C. (2007). Weak Dependence : With Examples and Applications. Lecture Notes in Statistics 190 . Springer, New York. · Zbl 1165.62001
[13] Dehling, H. and Taqqu, M. S. (1989). The empirical process of some long-range dependent sequences with an application to \(U\)-statistics. Ann. Statist. 17 1767-1783. · Zbl 0696.60032 · doi:10.1214/aos/1176347394
[14] Dudley, R. M. and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. Verw. Gebiete 62 509-552. · Zbl 0488.60044 · doi:10.1007/BF00534202
[15] Finkelstein, H. (1971). The law of the iterated logarithm for empirical distributions. Ann. Math. Statist. 42 607-615. · Zbl 0227.62012 · doi:10.1214/aoms/1177693410
[16] Giraitis, L. and Surgailis, D. (2002). The reduction principle for the empirical process of a long memory linear process. In Empirical Process Techniques for Dependent Data 241-255. Birkhäuser, Boston, MA. · Zbl 1021.62073 · doi:10.1007/978-1-4612-0099-4_8
[17] Hennion, H. and Hervé, L. (2001). Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766 . Springer, Berlin. · Zbl 0983.60005
[18] Kiefer, J. (1972). Skorohod embedding of multivariate rv’s, and the sample df. Z. Wahrsch. Verw. Gebiete 24 1-35. · Zbl 0267.60034 · doi:10.1007/BF00532460
[19] Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent \(\mathrm{RV}\)’s and the sample \(\mathrm{DF}\). I. Z. Wahrsch. Verw. Gebiete 32 111-131. · Zbl 0308.60029 · doi:10.1007/BF00533093
[20] Lai, T. L. (1974). Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes. Z. Wahrsch. Verw. Gebiete 29 7-19. · Zbl 0272.60024 · doi:10.1007/BF00533181
[21] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces : Isoperimetry and Processes. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [ Results in Mathematics and Related Areas (3)] 23 . Springer, Berlin. · Zbl 0748.60004
[22] Liverani, C., Saussol, B. and Vaienti, S. (1999). A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 671-685. · Zbl 0988.37035 · doi:10.1017/S0143385799133856
[23] Merlevède, F. and Rio, E. (2012). Strong approximation of partial sums under dependence conditions with application to dynamical systems. Stochastic Process. Appl. 122 386-417. · Zbl 1230.60034 · doi:10.1016/j.spa.2011.08.012
[24] Rio, E. (2000). Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Mathématiques & Applications ( Berlin ) [ Mathematics & Applications ] 31 . Springer, Berlin. · Zbl 0944.60008
[25] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 43-47. · Zbl 0070.13804 · doi:10.1073/pnas.42.1.43
[26] Rüschendorf, L. (1985). The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70 117-129. · Zbl 0554.60024
[27] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics . Wiley, New York. · Zbl 1170.62365
[28] Wu, W. B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35 2294-2320. · Zbl 1166.60307 · doi:10.1214/009117907000000060
[29] Wu, W. B. (2008). Empirical processes of stationary sequences. Statist. Sinica 18 313-333. · Zbl 1137.62027
[30] Yoshihara, K.-i. (1979). Note on an almost sure invariance principle for some empirical processes. Yokohama Math. J. 27 105-110. · Zbl 0418.60037
[31] Yu, H. (1993). A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. Probab. Theory Related Fields 95 357-370. · Zbl 0792.60018 · doi:10.1007/BF01192169
[32] Zweimüller, R. (1998). Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 11 1263-1276. · Zbl 0922.58039 · doi:10.1088/0951-7715/11/5/005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.