×

Countable dense homogeneity and the double arrow space. (English) Zbl 1284.54023

The classical Alexandroff-Urysohn double arrow space \(\mathbb{A}\) was first defined in [P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts dédié à Monsieur D. Egoroff. Verhandelingen Amsterdam 14, No.1, 93 S. (1929; JFM 55.0960.02)]. Let \(\mathbb{A}_{0}=(0,1]\times\{0 \}\), \(\mathbb{A}_{1}=[0,1)\times\{1 \}\) and \(\mathbb{A}=\mathbb{A}_{0}\cup \mathbb{A}_{1}\). The lexicographic (strict) order on \(\mathbb{A}\) is defined as \(\langle x,t\rangle < \langle y,s\rangle\) if \(x<y\) or \(x=y\) and \(t<s\). Then \(\mathbb{A}\) is given the order topology and it is known that \(\mathbb{A}\) is separable, first countable, compact, 0-dimensional and of weight \(\mathrm{c}\). Moreover, both \(\mathbb{A}_{0}\) and \(\mathbb{A}_{1}\) have the Sorgenfrey line topology as subspaces of \(\mathbb{A}\) and both are dense in \(\mathbb{A}\).
In this paper, the author undertakes to answer the questions in [A. V. Arhangel’skii and J. van Mill, Proc. Am. Math. Soc. 141, No. 11, 4031–4038 (2013; Zbl 1315.54004)] and proves the following results:
i) \(\mathbb{A}\)\(\times\)\(^{\omega}2\) is not countable dense homogeneous (CDH for short), ii) \(^{\omega}\)\(\mathbb{A}\) is not CDH, iii) \(\mathbb{A}\) has exactly \(\mathrm{c}\) types of countable dense subsets.
Moreover, the author shows that \(\mathbb{A}\) does not contain any subspace homeomorphic to \(\mathbb{A}\)\(\times\)\(({\omega}+1)\) and proves if \(C\) is compact and countably infinite then the \(C\)\(\times\)\(\mathbb{A}\) is neither homogeneous nor CDH.

MSC:

54B10 Product spaces in general topology
54D65 Separability of topological spaces
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces

References:

[1] Alexandroff, P.; Urysohn, P., Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam, 14 (1929) · JFM 55.0960.02
[2] Arhangelʼskiĭ, A. V.; van Mill, Jan, On the cardinality of countable dense homogeneous spaces, Proc. Amer. Math. Soc. (2013), in press · Zbl 1315.54004
[3] Arhangelʼskiĭ, A. V.; van Mill, Jan, Topological homogeneity, (Recent Progress on General Topology, III (2013)), in press
[4] Baldwin, S.; Beaudoin, R. E., Countable dense homogeneous spaces under Martinʼs axiom, Israel J. Math., 65, 2, 153-164 (1989) · Zbl 0674.54004
[5] Brian, W.; van Mill, J.; Suabedissen, R., Homogeneity and generalizations of 2-point sets, Houston J. Math. (2013), in press
[6] Burke, D. K.; Moore, J. T., Subspaces of the Sorgenfrey line, Topology Appl., 90, 1-3, 57-68 (1998) · Zbl 0967.54030
[7] van Douwen, Eric K., The integers and topology, (Kunen, K.; Vaughan, Jerry E., Handbook of Set-Theoretic Topology (1984), North-Holland: North-Holland Amsterdam), 111-167 · Zbl 0561.54004
[8] Dow, A.; Pearl, E., Homogeneity in powers of zero-dimensional first-countable spaces, Proc. Amer. Math. Soc., 125, 8, 2503-2510 (1997) · Zbl 0963.54002
[9] Engelking, R., General Topology, Sigma Ser. Pure Math., vol. 6 (1989), Heldermann Verlag: Heldermann Verlag Berlin, viii+529 pp., translated from Polish by the author · Zbl 0684.54001
[10] Farah, I.; Hrušák, M.; Martínez Ranero, C., A countable dense homogeneous set of reals of size \(\aleph_1\), Fund. Math., 186, 1, 71-77 (2005) · Zbl 1083.54020
[11] Fitzpatrick, B.; Zhou, H. X., Countable dense homogeneity and the Baire property, Topology Appl., 43, 1, 1-14 (1992) · Zbl 0780.54029
[12] Hernández-Gutiérrez, R.; Hrušák, M., Non-meager \(P\)-filters are countable dense homogeneous, Colloq. Math., 130, 281-289 (2013) · Zbl 1272.54020
[13] Hrušák, M.; Zamora Avilés, B., Countable dense homogeneity of definable spaces, Proc. Amer. Math. Soc., 133, 11, 3429-3435 (2005) · Zbl 1074.54011
[15] Mazurkiewicz, S.; Sierpiński, W., Contribution à la topologie des ensembles dénombrables, Fund. Math., 1, 1, 17-27 (1920) · JFM 47.0176.01
[16] Medini, A.; Milovich, D., The topology of ultrafilters as subspaces of \(2^\omega \), Topology Appl., 159, 5, 1318-1333 (2012) · Zbl 1241.03058
[17] Steprāns, J.; Zhou, H. X., Some results on CDH spaces. I, Special Issue on Set-Theoretic Topology. Special Issue on Set-Theoretic Topology, Topology Appl., 28, 2, 147-154 (1988) · Zbl 0647.54017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.