×

Existence and stability of global solutions of shock diffraction by wedges for potential flow. (English) Zbl 1284.35282

Chen, Gui-Qiang G. (ed.) et al., Hyperbolic conservation laws and related analysis with applications. Selected papers based on the presentations at the workshop at the International Centre for Mathematical Sciences (ICMS) Edinburgh, UK, September 19–23, 2011. Berlin: Springer (ISBN 978-3-642-39006-7/hbk; 978-3-642-39007-4/ebook). Springer Proceedings in Mathematics & Statistics 49, 113-142 (2014).
The authors study shock diffraction by a two-dimensional convex cornered wedge. The problem is formulated as an initial-boundary value problem for the potential flow equation. This problem is invariant with respect to self-similar scale. Then this problem is reduced to the boundary value problem for the first-order nonlinear system of mixed elliptic-hyperbolic type and reformulated as a free boundary problem for nonlinear degenerate first order elliptic system in a bounded domain. Existence and regularity of global self-similar solutions is proved.
For the entire collection see [Zbl 1276.35003].

MSC:

35L67 Shocks and singularities for hyperbolic equations
35M12 Boundary value problems for PDEs of mixed type
35B65 Smoothness and regularity of solutions to PDEs
35J70 Degenerate elliptic equations
35L65 Hyperbolic conservation laws
35R35 Free boundary problems for PDEs
35J46 First-order elliptic systems
Full Text: DOI

References:

[1] Bae, M.; Chen, G.-Q.; Feldman, M., Regularity of solutions to regular shock reflection for potential flow, Invent. Math., 175, 505-543 (2009) · Zbl 1170.35031 · doi:10.1007/s00222-008-0156-4
[2] Bae, M.; Chen, G.-Q.; Feldman, M., Global solutions to the Prandtl-Meyer reflection for supersonic flow impinging onto a solid wedge, Quart. Appl. Math., 71, 583-600 (2013) · Zbl 1275.35146 · doi:10.1090/S0033-569X-2013-01335-2
[3] V. Bargman, On nearly glancing reflection of shocks. Off. Sci. Res. Dev. Rep. No. 5117 (1945)
[4] Keyfitz, B. L.; Kim, E. H., Free boundary problems for the unsteady transonic small disturbance equation: transonic regular reflection, Methods Appl. Anal., 7, 313-336 (2000) · Zbl 1015.76038
[5] C̆anić, S.; Keyfitz, B. L.; Kim, E. H., Free foundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal., 37, 1947-1977 (2006) · Zbl 1107.35083
[6] Chen, G.-Q.; Feldman, M., Global solutions of shock reflection by large-angle wedges for potential flow, Ann. Math., 171, 2, 1067-1182 (2010) · Zbl 1277.35252 · doi:10.4007/annals.2010.171.1067
[7] G.-Q. Chen, M. Feldman, Mathematics of shock reflection-diffraction and von Neumanns conjectures. Research Monograph (2013 preprint)
[8] G.-Q. Chen, W. Xiang, Global solutions of the shock diffraction problem by wedges for potential flow (2013 preprint)
[9] G.-Q. Chen, X. Deng, W. Xiang, The global existence and optimal regularity of solutions for shock diffraction problem to the nonlinear wave systems. Arch. Ration. Mech. Anal. (2013 to appear)
[10] R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Reprinting of the 1948 original). Applied Mathematical Sciences, vol 21 (Springer, New York/Heidelberg, 1976) · Zbl 0365.76001
[11] Elling, V.; Liu, T.-P., Supersonic flow onto a solid wedge, Comm. Pure Appl. Math., 61, 1347-1448 (2008) · Zbl 1143.76030 · doi:10.1002/cpa.20231
[12] Fletcher, C. H.; Weimer, D. K.; Bleakney, W., Pressure behind a shock wave diffracted through a small angle, Phys. Rev., 78, 5, 634-635 (1950) · doi:10.1103/PhysRev.78.634.2
[13] Fletcher, C. H.; Taub, A. H.; Bleakney, W., The Mach reflection of shock waves at nearly glancing incidence, Rev. Mod. Phys., 23, 3, 271-286 (1951) · Zbl 0044.41002 · doi:10.1103/RevModPhys.23.271
[14] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (1998), Berlin: Springer, Berlin · Zbl 0691.35001
[15] Kim, E. H., Global sub-sonic solution to an interacting transonic shock of the self-similar nonlinear wave equation, J. Differ. Equ., 248, 2906-2930 (2010) · Zbl 1194.35262 · doi:10.1016/j.jde.2010.02.021
[16] Lieberman, G., The Perron process applied to oblique derivative problems, Adv. Math., 55, 161-172 (1985) · Zbl 0567.35027 · doi:10.1016/0001-8708(85)90019-2
[17] Lieberman, G. M., Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl., 113, 422-440 (1986) · Zbl 0609.35021 · doi:10.1016/0022-247X(86)90314-8
[18] Lighthill, M. J., The diffraction of blast I, Proc. R. Soc., 198A, 454-470 (1949) · Zbl 0041.54307 · doi:10.1098/rspa.1949.0113
[19] Lighthill, M. J., The diffraction of blast II, Proc. R. Soc., 200A, 554-565 (1950) · Zbl 0041.54307 · doi:10.1098/rspa.1950.0037
[20] Whitham, G. B., Linear and Nonlinear Waves (Reprint of the 1974 original) (1999), New York: Pure and Applied Mathematics (Wiley, New York · Zbl 0940.76002
[21] Zheng, Y., Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Math. Appl. Sinica (English Ser), 22, 177-210 (2006) · Zbl 1106.35034 · doi:10.1007/s10255-006-0296-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.