×

Homogenisation theory for Friedrichs systems. (English) Zbl 1284.35045

Summary: We develop a general homogenisation procedure for Friedrichs systems. Under reasonable assumptions, the concepts of \(G\) and \(H\)-convergence are introduced. As Friedrichs systems can be used to represent various boundary or initial-boundary value problems for partial differential equations, some additional assumptions are needed for compactness results. These assumptions are particularly examined for the stationary diffusion equation, the heat equation and a model example of a first order equation leading to memory effects. In the first two cases, the equivalence with the original notion of \(H\)-convergence is proved.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35F45 Boundary value problems for systems of linear first-order PDEs
35M32 Boundary value problems for mixed-type systems of PDEs
47F05 General theory of partial differential operators

References:

[1] Gr\'egoire Allaire, <em>Shape Optimization by the Homogenization Method</em>,, Springer-Verlag (2002) · Zbl 0990.35001
[2] Nenad Antoni\'c, Graph spaces of first-order linear partial differential operators,, Math. Communications, 14, 135 (2009) · Zbl 1183.35079
[3] Nenad Antoni\'c, Intrinsic boundary conditions for Friedrichs systems,, Comm. Partial Diff. Eq., 35, 1690 (2010) · Zbl 1226.35012
[4] Nenad Antoni\'c, Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems,, J. Diff. Eq., 250, 3630 (2011) · Zbl 1223.35117
[5] Nenad Antoni\'c, Second-order equations as Friedrichs systems,, Nonlinear Analysis: RWA, 14, 290 (2014) · Zbl 1304.35402
[6] Nenad Antoni\'c, Heat equation as a Friedrichs system,, Journal of Mathematical Analysis and Applications, 404, 537 (2013) · Zbl 1304.35319
[7] Nenad Antoni\'c, Parabolic H-convergence and small-amplitude homogenization,, Applicable Analysis, 88, 1493 (2009) · Zbl 1180.35068
[8] Alain Bensoussan, <em>Asymptotic Analysis in Periodic Structures</em>,, North\'c湌olland (1978) · Zbl 0404.35001
[9] Kre\vsimir Burazin, <em>Contributions to the theory of Friedrichs’ and Hyperbolic Systems</em>,, Ph.D thesis (in Croatian) (2008) · Zbl 1180.35334
[10] Tan Bui-Thanh, A unified discontinuous Petrov-Galerkin method and its analysis for Friedrichs’ systems,, SIAM J. Numer. Anal., 51, 1933 (2013) · Zbl 1278.65173
[11] Andrea Dall’Aglio, A corrector result for \(H\)-converging parabolic problems with time-dependent coefficients,, Annali della Scuola Normale Superiore di Pisa, 25, 329 (1997) · Zbl 1005.35015
[12] Daniele Antonio Di Pietro, <em>Mathematical Aspects of Discontinuous GalerKin Methods</em>,, Springer (2012) · Zbl 1231.65209
[13] Robert Dautray, <em>Mathematical analysis and numerical methods for science and technology, Vol. II</em>,, Springer (1992) · Zbl 0755.35001
[14] Alexandre Ern, <em>Theory and Practice of Finite Elements</em>,, Springer (2004) · Zbl 1059.65103
[15] Alexandre Ern, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory,, SIAM J. Numer. Anal., 44, 753 (2006) · Zbl 1122.65111
[16] Alexandre Ern, Discontinuous Galerkin methods for Friedrichs’ systems. II. Second-order elliptic PDEs,, SIAM J. Numer. Anal., 44, 2363 (2006) · Zbl 1133.65098
[17] Alexandre Ern, Discontinuous Galerkin methods for Friedrichs’ systems. III. Multifield theories with partial coercivity,, SIAM J. Numer. Anal., 46, 776 (2008) · Zbl 1179.65145
[18] Alexandre Ern, An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs’ systems,, Comm. Partial Diff. Eq., 32, 317 (2007) · Zbl 1118.47003
[19] Kurt O. Friedrichs, Symmetric positive linear differential equations,, Comm. Pure Appl. Math., 11, 333 (1958) · Zbl 0083.31802
[20] Max Jensen, <em>Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions</em>,, Ph.D thesis (2004)
[21] Jacques-Lous Lions, <em>Non-homogeneous Boundary Value Problems and Applications, Vol. 1,</em>, Springer (1972) · Zbl 0223.35039
[22] Fran\c cois Murat, H-convergence,, in S\'eminaire d’Analyse Fonctionnelle et Num\'erique de l’Universit\'e d’Alger, 21 (1978) · Zbl 0920.35019
[23] Jeffrey Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Trans. Amer. Math. Soc., 291, 167 (1985) · Zbl 0549.35099
[24] Sergio Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore,, Ann. Scuola Norm. Sup. Pisa, 21, 657 (1967) · Zbl 0153.42103
[25] Sergio Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Ann. Scuola Norm. Sup. Pisa, 22, 571 (1968) · Zbl 0174.42101
[26] Sergio Spagnolo, Convergence of parabolic equations,, Bolletino della Unione Matematica Italiana, 14, 547 (1977) · Zbl 0356.35042
[27] Luc Tartar, Problèmes de contrôle des coefficients dans des équations aux dérivées partielles,, in Control Theory, 107, 420 (1975) · Zbl 0318.49010
[28] Luc Tartar, Nonlocal effects induced by homogenisation,, in Partial Differential Equations and the Calculus of Variation, 925 (1989) · Zbl 0682.35028
[29] Luc Tartar, <em>The General Theory of Homogenization: A Personalized Introduction,</em>, Springer (2009) · Zbl 1188.35004
[30] Marcus Waurick, On the theory of homogenization of evolutionary equations in Hilbert spaces,, preprint · Zbl 1346.74160
[31] Vasili V. \vZikov, Homogenization and G-convergence of differential operators,, Uspehi Mat. Nauk, 34, 65 (1979) · Zbl 0421.35076
[32] Vasili V. \vZikov, On G-convergence of parabolic operators,, Russ. Math. Surv., 36, 9 (1981) · Zbl 0479.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.