×

Characterizing rings in terms of the extent of the injectivity and projectivity of their modules. (English) Zbl 1284.16003

For a ring \(R\), the module \(M\) is injective relative to \(N\) if for any submodule \(K\) of \(N\) the induced map \(\operatorname{Hom}_R(N,M)\to\operatorname{Hom}_R(K,M)\) is surjective.
For fixed \(M\), the injectivity domain \(\mathcal In^{-1}(M)\) is the collection of all \(N\), such that \(M\) is relative injective to \(N\). One may note that the injectivity domain of \(M\) is the entire module category if and only if \(M\) is injective.
Finally, the i-profile of \(R\) is the collection of all injectivity domains, that is \(\{\mathcal In^{-1}(M)\mid M\in\text{Mod-}R\}\).
The paper under review studies the structure of i-profiles of rings (as posets), and of p-profiles (defined dually via relative projective modules). At the same time the authors also consider the question what properties of the poset (for instance it being linearly ordered) mean for the structure of the ring \(R\).

MSC:

16D50 Injective modules, self-injective associative rings
16D40 Free, projective, and flat modules and ideals in associative algebras

References:

[1] Alahmadi, A. N.; Alkan, M.; López-Permouth, S. R., Poor modules: The opposite of injectivity, Glasg. Math. J., 52A, 7-17 (2010) · Zbl 1228.16004
[2] Anderson, F. W.; Fuller, K. R., Rings and Categories of Modules (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0242.16025
[3] Boyle, A. K., Hereditary QI-rings, Trans. Amer. Math. Soc., 192, 115-120 (1974) · Zbl 0286.16016
[4] Dung, N. V.; Huynh, D. V.; Smith, P. F.; Wisbauer, R., Extending Modules, Pitman Res. Notes Math. Ser., vol. 313 (1994) · Zbl 0841.16001
[5] Cozzens, J. H., Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc., 76, 1, 75-79 (1970) · Zbl 0213.04501
[6] Er, N.; López-Permouth, S. R.; Sökmez, N., Rings whose modules have maximal or minimal injectivity domain, J. Algebra, 330, 1, 404-417 (2011) · Zbl 1227.16004
[7] Facchini, A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules (1998), Birkhäuser Verlag · Zbl 0930.16001
[8] Faith, C.; Huynh, D. V., When self-injective rings are QF: A report on a problem, J. Algebra Appl., 1, 1, 75-105 (2002) · Zbl 1034.16005
[9] Golan, J., Linear Topologies on a Ring: An Overview, Pitman Res. Notes Math. Ser., vol. 159 (1987) · Zbl 0615.16028
[10] Holston, C.; López-Permouth, S. R.; Orhan-Ertaş, N., Rings whose modules have maximal or minimal projectivity domain, J. Pure Appl. Algebra, 216, 3, 673-678 (2012) · Zbl 1251.16002
[11] Mohamed, S. H.; Müller, B. J., Continuous and Discrete Modules (1990), Cambridge University Press · Zbl 0701.16001
[12] Raggi, F.; Ríos, J.; Rincón, H.; Fernández-Alonso, R., Basic preradicals and main injective modules, J. Algebra Appl., 8, 1, 1-16 (2009) · Zbl 1178.16017
[13] Raggi, F.; Ríos, J.; Rincón, H.; Fernández-Alonso, R., Main injective rings, Comm. Algebra, 39, 4, 1226-1233 (2011) · Zbl 1221.16001
[14] Shelah, S., Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math., 28, 3 (1974) · Zbl 0318.02053
[15] Stenström, B., Rings of Quotients (1975), Springer-Verlag: Springer-Verlag Berlin · Zbl 0296.16001
[16] de Viola-Priori, A. M.; Viola-Priori, J. E.; Wisbauer, R., Module categories with linearly ordered closed subcategories, Comm. Algebra, 22, 9, 3613-3627 (1994) · Zbl 0806.16009
[17] Wisbauer, R., Grundlagen der Modul- und Ringtheorie (1988), Verlag Reinhard Fischer: Verlag Reinhard Fischer Munich · Zbl 0657.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.