×

Solving the Loewner PDE in complete hyperbolic starlike domains of \(\mathbb{C}^N\). (English) Zbl 1283.30054

A holomorphic vector field \(H\) on a domain \(D\subset\mathbb C^N\) is semicomplete if the Cauchy problem \(\dot x(t)=H(x(t))\), \(x(0)=z_0\), has a solution defined for all \(t\in\mathbb R^+:=[0,\infty)\) and \(z_0\in D\). A Herglotz vector field of order \(d\in[1,\infty]\) on \(D\) is a mapping \(G: D\times\mathbb R^+\to\mathbb C^N\) such that \(G(z,\cdot)\) is measurable on \(\mathbb R^+\) for all \(z\in D\), \(G(\cdot,t)\) is a semicomplete holomorphic vector field on \(D\) for all \(t\in\mathbb R^+\), and, for any compact set \(K\subset D\) and all \(T>0\), there exists a function \(C_{T,K}\in L^d([0,T],\mathbb R^+)\) for which \(\|G(z,t)\|\leq C_{T,K}(t)\), \(z\in K\), \(a.a.t\in[0,T]\). A family \((\varphi_{s,t})_{0\leq s\leq t}\) of holomorphic self-mappings of \(D\) is an evolution family of order \(d\) if \(\varphi_{s,s}=\mathrm{id}\), \(\varphi_{s,t}=\varphi_{u,t}\circ\varphi_{s,u}\), \(0\leq s\leq u\leq t\), and if for any \(T>0\) and any compact set \(K\subset\subset D\) there exists a function \(c_{T,K}\in L^d([0,T],\mathbb R^+)\) such that \[ \|\varphi_{s,t}(z)-\varphi_{s,u}(z)\|\leq\int_u^tc_{T,K}(\xi)d\xi, \;\;z\in K,\;\;0\leq s\leq u\leq t\leq T. \] For a non-empty open subset \(M\) of a complex manifold \(\tilde M\), the pair \((M,\tilde M)\) is a Runge pair if \(\mathcal O(\tilde M)\) is dense in \(\mathcal O(M)\). A domain \(D\subset\mathbb C^N\) is Runge if \((D,\mathbb C^N)\) is a Runge pair.
The main result of the paper can be stated in the following way.
Theorem 1.1. For a complete hyperbolic starlike domain \(D\subset\mathbb C^N\), let \(G:D\times\mathbb R^+\to\mathbb C^N\) be a Herglotz vector field of order \(d\in[1,\infty]\). Then there exists a family of univalent mappings \((f_t:D\to\mathbb C^N)\) of order \(d\) which solves the Loewner PDE \[ \frac{\partial f_t}{\partial t}(z)=-df_t(z)G(z,t),\;\;\text{ a. a. }t\geq0 \text{ and for all } z\in D. \] Moreover, \(R:=\bigcup_{t\geq0}f_t(D)\) is a Runge and Stein domain in \(\mathbb C^N\) and any other solution to the Loewner PDE is of the form \((\Phi\circ f_t)\) for a suitable holomorphic map \(\Phi:R\to\mathbb C^N\).
It is also proved that, for a univalent self-mapping \(\varphi\) of the unit ball \(\mathbb B^N\), without assuming that \(\varphi(\mathbb B^N)\) is Runge, the question whether there exists an evolution family \((\varphi_{s,t}:\mathbb B^n\to\mathbb B^N)\) of order \(d\in[1,\infty]\) such that \(\varphi_{0,1}=\varphi\) has a negative answer.

MSC:

30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
32A30 Other generalizations of function theory of one complex variable

References:

[1] Abate, M.; Bracci, F.; Contreras, M. D.; Díaz-Madrigal, S., The evolution of Loewner’s differential equations, Eur. Math. Soc. Newsl., 78, 31-38 (2010) · Zbl 1230.30003
[2] Andersén, E.; Lempert, L., On the group of holomorphic automorphisms of \(C^n\), Invent. Math., 110, 2, 371-388 (1992) · Zbl 0770.32015
[3] Arosio, L., Resonances in Loewner equations, Adv. Math., 227, 1413-1435 (2011) · Zbl 1256.32022
[4] Arosio, L., Loewner equations on complete hyperbolic domains, J. Math. Anal. Appl., 398, 609-621 (2013) · Zbl 1258.32007
[5] Arosio, L., Basins of attraction in Loewner equations, Ann. Acad. Sci. Fenn. Math., 37, 563-570 (2012) · Zbl 1281.32015
[6] Arosio, L.; Bracci, F., Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds, Anal. Math. Phys., 1, 4, 337-350 (2011) · Zbl 1254.32037
[7] Arosio, L.; Bracci, F.; Hamada, H.; Kohr, G., An abstract approach to Loewner chains, J. Anal. Math., 119, 1, 89-114 (2013) · Zbl 1321.32005
[8] Bracci, F.; Contreras, M. D.; Díaz-Madrigal, S., Evolution families and the Loewner equation I: the unit disc, J. Reine Angew. Math., 672, 1-37 (2012) · Zbl 1267.30025
[9] Bracci, F.; Contreras, M. D.; Díaz-Madrigal, S., Evolution families and the Loewner equation II: complex hyperbolic manifolds, Math. Ann., 344, 947-962 (2009) · Zbl 1198.32010
[10] Contreras, M. D.; Díaz-Madrigal, S.; Gumenyuk, P., Loewner chains in the unit disc, Rev. Mat. Iberoam., 26, 975-1012 (2010) · Zbl 1209.30011
[12] Dixon, P. G.; Esterle, J., Michael’s problem and the Poincaré-Fatou-Bieberbach phenomenon, Bull. Amer. Math. Soc. (N.S.), 15, 2, 127-187 (1986) · Zbl 0608.32008
[13] Docquier, F.; Grauert, H., Levisches problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140, 94-123 (1960) · Zbl 0095.28004
[14] Duren, P.; Graham, I.; Hamada, H.; Kohr, G., Solutions for the generalized Loewner differential equation in several complex variables, Math. Ann., 347, 2, 411-435 (2010) · Zbl 1196.32014
[15] El Kasimi, A., Approximation polynómiale dans les domaines etoilés de \(C^n\), Complex Var. Theory Appl., 10, 2-3, 179-182 (1988) · Zbl 0627.32008
[16] Fornæss, J. E., An increasing sequence of Stein manifolds whose limit is not Stein, Math. Ann., 223, 275-277 (1976) · Zbl 0334.32017
[17] Fornæss, J. E.; Stensønes, B., Stable manifolds of holomorphic hyperbolic maps, Internat. J. Math., 15, 8, 749-758 (2004) · Zbl 1071.32016
[18] Graham, I.; Hamada, H.; Kohr, G., Parametric representation of univalent mappings in several complex variables, Canad. J. Math., 54, 324-351 (2002) · Zbl 1004.32007
[19] Graham, I.; Hamada, H.; Kohr, G.; Kohr, M., Asymptotically spirallike mappings in several complex variables, J. Anal. Math., 105, 267-302 (2008) · Zbl 1148.32009
[20] Hamada, H., Polynomially bounded solutions to the Loewner differential equation in several complex variables, J. Math. Anal. Appl., 381, 179-186 (2011) · Zbl 1227.32020
[21] Kufarev, P. P., On one-parameter families of analytic functions, Mat. Sb., 13, 87-118 (1943), (in Russian) · Zbl 0061.14905
[22] Loewner, C., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann., 89, 103-121 (1923) · JFM 49.0714.01
[23] Pfaltzgraff, J. A., Subordination chains and univalence of holomorphic mappings in \(C^n\), Math. Ann., 210, 55-68 (1974) · Zbl 0275.32012
[24] Pfaltzgraff, J. A., Subordination chains and quasiconformal extension of holomorphic maps in \(C^n\), Ann. Acad. Sci. Fenn. AI, 1, 13-25 (1975) · Zbl 0314.32001
[25] Pommerenke, C., Über die subordination analytischer funktionen, J. Reine Angew. Math., 218, 159-173 (1965) · Zbl 0184.30601
[26] Poreda, T., On generalized differential equations in Banach spaces, Dissertationes Math., 310, 1-50 (1991) · Zbl 0745.35048
[27] Voda, M., Solution of a Loewner chain equation in several variables, J. Math. Anal. Appl., 375, 1, 58-74 (2011) · Zbl 1209.32007
[28] Wold, E. F., A long \(C^2\) which is not Stein, Ark. Mat., 48, 1, 207-210 (2010) · Zbl 1189.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.