×

Estimation of a subset of regression coefficients of interest in a model with non-spherical disturbances. (English) Zbl 1282.93238

Summary: This paper considers the estimation of a subset of regression coefficients in a linear regression model with non-spherical disturbances, when other regression coefficients are of no interest. A family of estimators is considered and its asymptotic distribution is derived. This proposed family of improved estimators is compared with the usual unrestricted FGLS estimator, and dominance conditions are obtained with respect to risk under quadratic loss as well as the Pitman nearness criterion. The results of a numerical simulation are presented to illustrate the risk performance of various estimators.

MSC:

93E10 Estimation and detection in stochastic control theory
93C73 Perturbations in control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Stein, C., Inadmissibility of the usual estimator of the mean of a multivariate normal distribution, 197-206 (1956), Berkeley · Zbl 0073.35602
[2] James, W.; Stein, C., Estimation with quadratic loss (1961), Berkeley · Zbl 1281.62026
[3] Baranchik A J, Inadmissibility of maximum likelihood estimators in some multiple regression problems with three or more independent variables, Annals of Statistics, 1973, 1: 312-321. · Zbl 0271.62010 · doi:10.1214/aos/1176342368
[4] Judge G G and Bock M E, The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics, John Wiley and Sons, New York, 1978. · Zbl 0395.62078
[5] Judge G G and Bock M E, Biased Estimation, Handbook of Econometrics (Grillches Z and Intrilligator M D, eds.), North-Holland, Amsterdam, 1983: 599-649. · Zbl 1056.62525
[6] Hoffman K, Stein-estimation — A review, Statistical Papers, 2000, 41: 127-158. · Zbl 1047.62506 · doi:10.1007/BF02926100
[7] Wan A T K, The non-optimality of interval restricted and pretest estimators under squared error loss, Communications in Statistics — Theory and Methods, 1994, 23: 2231-2252. · Zbl 0825.62213 · doi:10.1080/03610929408831383
[8] Ohtani K and Wan A T K, On the sampling performance of an improved Stein inequality restricted estimator, Australian and New Zealand Journal of Statistics, 1998, 40: 181-187. · Zbl 1127.62382 · doi:10.1111/1467-842X.00020
[9] Shalabh and Wan A T K, Stein-rule estimation in mixed regression models, Biometrical Journal, 2000, 42: 203-214. · Zbl 0967.62042 · doi:10.1002/(SICI)1521-4036(200005)42:2<203::AID-BIMJ203>3.0.CO;2-0
[10] Chaturvedi A, Wan A T K, and Singh S P, Stein-rule restricted regression estimator in a linear regression model with non-spherical disturbances, Communications in Statistics, Theory and Methods, 2000, 30: 55-68. · Zbl 0991.62046 · doi:10.1081/STA-100001558
[11] Srivastava V K and Wan A T K, Separate versus system methods of Stein-rule estimation in S.U.R. models, Communications in Statistics — Theory and Methods, 2002, 31: 2077-2099. · Zbl 1051.62062 · doi:10.1081/STA-120015018
[12] Zhang X Y, Chen T, Wan A T K, and Zou G H, The robustness of Stein-type estimators under a non-scalar covariance structure, Journal of Multivariate Analysis, 2009, 100: 2376-2388. · Zbl 1175.62074 · doi:10.1016/j.jmva.2009.03.010
[13] Zou G H, Zeng J, Wan A T K, and Guan Z, Stein-type improved estimation of standard error under asymmetric LINEX loss function, Statistics, 2009, 43: 121-129. · Zbl 1282.62019 · doi:10.1080/02331880802190422
[14] Wan A T K, Chaturvedi A, and Zou G H, Unbiased estimation of the MSE matrices of improved estimators in linear regression, Journal of Applied Statistics, 2003, 30: 191-207. · Zbl 1121.62508 · doi:10.1080/0266476022000023730
[15] Bao H X H and Wan A T K, Improved estimators of hedonic housing price models, Journal of Real Estate Research, 2007, 29: 267-302.
[16] Ohtani K, Exact small sample properties of an operational variant of the minimum mean squared error estimator, Communications in Statistics — Theory and Methods, 1996(a), 25: 1223-1231. · Zbl 0875.62111 · doi:10.1080/03610929608831760
[17] Ohtani K, On an adjustment of degrees of freedom in the minimum mean squared error estimator, Communications in Statistics — Theory and Methods, 1996(b), 25: 3049-3058. · Zbl 0900.62361 · doi:10.1080/03610929608831885
[18] Ohtani K, Minimum mean squared error estimation of each individual coefficient in a linear regression model, Journal Statistical Planning and Inference, 1997, 62: 301-316. · Zbl 0886.62067 · doi:10.1016/S0378-3758(96)00180-2
[19] Ohtani K, MSE performance of a heterogeneous pre-test estimator, Statistics and Probability Letters, 1999, 41: 65-71. · Zbl 0933.62062 · doi:10.1016/S0167-7152(98)00123-0
[20] Wan A T K and Kurumai H, An iterative feasible minimum mean squared error estimator of the disturbance variance in linear regression under asymmetric loss, Statistics and Probability Letters, 1999, 45: 253-259. · Zbl 0934.62069 · doi:10.1016/S0167-7152(99)00065-6
[21] Wan A T K and Ohtani K, Minimum mean squared error estimation in linear regression with an inequality constraint, Journal of Statistical Planning and Inference, 2000, 86: 157-173. · Zbl 0964.62056 · doi:10.1016/S0378-3758(99)00172-X
[22] Theil H, Principles of Econometrics, North-Holland, Amsterdam, 1971. · Zbl 0221.62002
[23] Chaturvedi A and Shukla G, Stein-rule estimation in linear models with non-scalar error covariance matrix, Sankhyā, Series B, 1990, 52: 293-304. · Zbl 0746.62057
[24] Wan A T K and Chaturvedi A, Operational variants of the minimum mean squared error estimator in linear regression models with non-spherical disturbances, Annals of the Institute of Statistical Mathematics, 2000, 52: 332-342. · Zbl 1064.62542 · doi:10.1023/A:1004169923370
[25] Wan A T K and Chaturvedi A, Double k-Class estimators in regression models with non-spherical disturbances, Journal of Multivariate Analysis, 2001, 79: 226-250. · Zbl 0986.62055 · doi:10.1006/jmva.2000.1963
[26] Ullah A and Ullah S, Double k-class estimators of coefficients in linear regression, Econometrica, 1978, 46: 705-722. · Zbl 0377.62037 · doi:10.2307/1914242
[27] Peddada S D, A short note on Pitman measure of nearness, American Statistician, 1985, 39: 298-299.
[28] Rao C R, Keating J P, and Mason R L, The Pitman nearness criterion and its determination, Communications in Statistics — Theory and Methods, 1986, 15: 3173-3191. · Zbl 0615.62031 · doi:10.1080/03610928608829302
[29] Sen P K, Kubokawa T, and Saleh A K M E, The Stein paradox in the Pitman closeness, Annals of Statistics, 1989, 17: 1563-1579. · Zbl 0681.62015 · doi:10.1214/aos/1176347276
[30] Peddada S D and Khattre R, On Pitman nearness and variance of estimators, Communications in Statistics — Theory and Methods, 1986, 15: 3005-3017. · Zbl 0615.62030 · doi:10.1080/03610928608829292
[31] Khattre R and Peddada S D, A short note on Pitman nearness for elliptically symmetric estimators, Journal Statistical Planning and Inference, 1987, 16: 257-260. · Zbl 0655.62058 · doi:10.1016/0378-3758(87)90075-9
[32] Srivastava A K and Srivastava V K, Pitman closeness for Stein-rule estimators of regression coefficients, Statistical Probability Letters, 1993, 18: 85-89. · Zbl 0779.62057 · doi:10.1016/0167-7152(93)90175-I
[33] Chaturvedi A, A note on the Stein rule estimation in linear models with nonscalar error covariance matrix, Sankhyā, Series B, 1995, 57: 158-165. · Zbl 0856.62061
[34] Chaturvedi A and Shalabh, Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function, Journal of Multivariate Statistics, 2004, 90: 229-256. · Zbl 1051.62058 · doi:10.1016/j.jmva.2003.09.011
[35] Ohtani K and Wan A T K, Comparison of Stein variance and the usual estimators for the regression error variance under the Pitman nearness criterion when variables are omitted, Statistical Papers, 2009, 50: 151-160. · Zbl 1312.62126 · doi:10.1007/s00362-007-0047-6
[36] Magnus J R and Durbin J, Estimation of regression coefficients of interest when other regression coefficients are of no interest, Econometrica, 1999, 67: 639-643. · Zbl 1056.62525 · doi:10.1111/1468-0262.00040
[37] Danilov D and Magnus J R, On the harm that ignoring pretesting can cause, Journal of Econometrics, 2004, 122: 27-46. · Zbl 1282.91257 · doi:10.1016/j.jeconom.2003.10.018
[38] Zou G H, Wan A T K, Wu X, and Chen T, Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors, Statistics and Probability Letters, 2007, 77: 803-810. · Zbl 1373.62367 · doi:10.1016/j.spl.2006.11.019
[39] Magnus J R, Wan A T K, and Zhang X Y, Weighted average least squares estimator with nonspherical disturbances and an application to the Hong Kong housing market, Computational Statistics and Data Analysis, 2011, 55(3): 1331-1341. · Zbl 1328.65034 · doi:10.1016/j.csda.2010.09.023
[40] Rothenberg T J, Approximate normality of generalized least squares estimates, Econometrica, 1984, 52: 811-825. · Zbl 0557.62064 · doi:10.2307/1911185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.