×

A note on local bases and convergence in fuzzy metric spaces. (English) Zbl 1282.54008

According to A. George and P. Veeramani [Fuzzy Sets Syst. 64, No. 3, 395–399 (1994; Zbl 0843.54014)], a fuzzy metric space is a triple \((X,M,\ast)\), where \(X\) is a set, \(\ast\) is a continuous \(t\)-norm [B. Schweizer and A. Sklar, Probabilistic Metric Spaces. North Holland Series in Probability and Applied Mathematics. New York-Amsterdam-Oxford: North-Holland. (1983; Zbl 0546.60010)], and \(M: X\times X\times(0,\infty)\rightarrow[0,1]\) is a map (fuzzy metric on \(X\)), which satisfies the following conditions for every \(x\), \(y\), \(z\in X\) and every \(s\), \(t>0\): (1) \(M(x,y,t)>0\); (2) \(M(x,y,t)=1\) if and only if \(x=y\); (3) \(M(x,y,t)=M(y,x,t)\); (4) \(M(x,y,t)\ast M(y,z,s)\leqslant M(x,z,t+s)\); (5) the map \(M(x,y,-): (0,\infty)\rightarrow[0,1]\) is continuous.
The current paper considers a fuzzy metric space analogue of the result that given a point \(x_0\) in a (crisp) metric space \((X,d)\), and a family \(\xi\) of open balls centered at \(x_0\), if the intersection of the elements of \(\xi\) is the singleton set \(\{x_0\}\), then \(\xi\) is a local base at \(x_0\), provided that \(x_0\) is not isolated in \((X,d)\).
The authors begin with an easy example (Example 7 on page 144), which shows that the above-mentioned claim is no longer true in fuzzy metric spaces. When restricting oneself, however, to stationary fuzzy metric spaces (which means that for every \(x\), \(y\in X\), the map \(M_{x,y}(t)=M(x,y,t)\) is constant), one does get the required statement for particular families of open balls (Proposition 8 on page 145). Similar analogues are obtained for principal fuzzy metric spaces (Corollary 14 on page 146), and their dual co-principal fuzzy metric spaces (Corollary 22 on page 147), as well as replacing “co-principal” with “compact” (Theorem 23 on page 147). The authors though were unable to present a general analogue of the above-mentioned claim in case of fuzzy metric spaces, formulating instead an open problem (Problem 17 on page 146).
The paper is well written, and is easy to follow, provided that the reader possesses a certain background on the theory of fuzzy metric spaces (which can be obtained from the numerous references given by the authors on this topic).

MSC:

54A40 Fuzzy topology
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54E35 Metric spaces, metrizability
54E45 Compact (locally compact) metric spaces
03E72 Theory of fuzzy sets, etc.
Full Text: DOI

References:

[1] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64, 395-399 (1994) · Zbl 0843.54014
[2] George, A.; Veeramani, P., Some theorems in fuzzy metric spaces, J. Fuzzy Math., 3, 933-940 (1995) · Zbl 0870.54007
[3] George, A.; Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90, 365-368 (1997) · Zbl 0917.54010
[4] Gregori, V.; López-Crevillén, A.; Morillas, S.; Sapena, A., On convergence in fuzzy metric spaces, Topol. Appl., 156, 3002-3006 (2009) · Zbl 1181.54006
[5] Gregori, V.; Miñana, J. J.; Morillas, S., Some questions in fuzzy metric spaces, Fuzzy Sets Syst., 204, 71-85 (2012) · Zbl 1259.54001
[7] Gregori, V.; Morillas, S.; Sapena, A., Examples of fuzzy metrics and applications, Fuzzy Sets Syst., 170, 95-111 (2011) · Zbl 1210.94016
[8] Gregori, V.; Romaguera, S., Some properties of fuzzy metric spaces, Fuzzy Sets Syst., 115, 485-489 (2000) · Zbl 0985.54007
[9] Gregori, V.; Romaguera, S., Characterizing completable fuzzy metric spaces, Fuzzy Sets Syst., 144, 411-420 (2004) · Zbl 1057.54010
[10] Gutiérrez García, J.; Romaguera, S., Examples of non-strong fuzzy metrics, Fuzzy Sets Syst., 162, 91-93 (2011) · Zbl 1206.54007
[11] Mihet, D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst., 144, 431-439 (2004) · Zbl 1052.54010
[12] Mihet, D., On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158, 915-921 (2007) · Zbl 1117.54008
[13] Morillas, S.; Gomez-Robledo, L.; Huertas, R.; Melgosa, M., Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula, J. Mod. Opt., 56, 13, 1447-1456 (2009)
[14] Morillas, S.; Gregori, V.; Hervás, A., Fuzzy peer groups for reducing mixed Gaussian impulse noise from color images, IEEE Trans. Image Process., 18, 7, 1452-1466 (2009) · Zbl 1371.94269
[15] Morillas, S.; Gregori, V.; Peris-Fajarnés, G.; Sapena, A., New adaptive vector filter using fuzzy metrics, J. Electron. Imaging, 16, 3, 1-15 (2007)
[16] Rodríguez-López, J.; Romaguera, S., The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst., 147, 273-283 (2004) · Zbl 1069.54009
[17] Romaguera, S.; Sapena, A.; Valero, O., Quasi-uniform isomorphisms in fuzzy quasi-metric spaces, bicompletion and D-completion, Acta Math. Hung., 114, 1-2, 49-60 (2007) · Zbl 1121.54016
[18] Sapena, A., A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol., 2, 63-76 (2001) · Zbl 0985.54006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.