×

Completely positive multipliers of quantum groups. (English) Zbl 1282.43002

Summary: We show that any completely positive multiplier of the convolution algebra of the dual of an operator algebraic quantum group \(\mathbb G\) (either a locally compact quantum group, or a quantum group coming from a modular or manageable multiplicative unitary) is induced in a canonical fashion by a unitary corepresentation of \(\mathbb G\). It follows that there is an order bijection between the completely positive multipliers of \(L^1(\mathbb G)\) and the positive functionals on the universal quantum group \(C^u_0(\mathbb G)\). We provide a direct link between the Junge, Neufang, Ruan representation result and the representing element of a multiplier, and use this to show that their representation map is always weak*-weak*-continuous.

MSC:

43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
22D15 Group algebras of locally compact groups
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

References:

[1] DOI: 10.1090/conm/363/06638 · doi:10.1090/conm/363/06638
[2] DOI: 10.1112/jlms/s2-45.1.126 · Zbl 0712.46029 · doi:10.1112/jlms/s2-45.1.126
[3] DOI: 10.2307/2045802 · Zbl 0593.43003 · doi:10.2307/2045802
[4] Brannan M., J. Reine Angew. Math. 672 pp 223– (2012)
[5] DOI: 10.1007/BF01393695 · Zbl 0681.43012 · doi:10.1007/BF01393695
[6] DOI: 10.4064/dm470-0-1 · Zbl 1214.43004 · doi:10.4064/dm470-0-1
[7] DOI: 10.1112/jlms/jdr013 · Zbl 1235.43004 · doi:10.1112/jlms/jdr013
[8] DOI: 10.2307/2374423 · Zbl 0577.43002 · doi:10.2307/2374423
[9] Effros E. G., London Mathematical Society Monographs, New Series 23, in: Operator Spaces (2000)
[10] Effros E. G., J. Operator Theory 50 pp 131– (2003)
[11] DOI: 10.1016/j.crma.2012.04.015 · Zbl 1252.46058 · doi:10.1016/j.crma.2012.04.015
[12] Haagerup U., J. Reine Angew. Math. 630 pp 141– (2009)
[13] DOI: 10.1112/plms/pdq041 · Zbl 1250.22005 · doi:10.1112/plms/pdq041
[14] DOI: 10.1142/S0129167X09005285 · Zbl 1194.22003 · doi:10.1142/S0129167X09005285
[15] DOI: 10.1142/S0129167X9700010X · Zbl 0870.46037 · doi:10.1142/S0129167X9700010X
[16] DOI: 10.1142/S0129167X01000757 · Zbl 1111.46311 · doi:10.1142/S0129167X01000757
[17] DOI: 10.1007/11376569_2 · doi:10.1007/11376569_2
[18] Kustermans J., Ann. Sci. École Norm. Sup. 33 pp 837– (2000)
[19] Kustermans J., Math. Scand. 92 pp 68– (2003) · Zbl 1034.46067 · doi:10.7146/math.scand.a-14394
[20] DOI: 10.1090/S0002-9939-1984-0759651-8 · doi:10.1090/S0002-9939-1984-0759651-8
[21] Meyer R., Münster J. Math. 5 pp 1– (2012)
[22] DOI: 10.1016/0022-1236(91)90139-V · Zbl 0745.46060 · doi:10.1016/0022-1236(91)90139-V
[23] DOI: 10.1023/A:1012230629865 · Zbl 1009.46037 · doi:10.1023/A:1012230629865
[24] DOI: 10.1016/j.jfa.2007.07.006 · Zbl 1134.46044 · doi:10.1016/j.jfa.2007.07.006
[25] DOI: 10.1112/S0024611504014650 · Zbl 1047.43008 · doi:10.1112/S0024611504014650
[26] Takesaki M., Encyclopaedia of Mathematical Sciences 124, in: Theory of Operator Algebras, I (2002) · Zbl 0990.46034
[27] DOI: 10.1112/S002461150101276X · Zbl 1028.46100 · doi:10.1112/S002461150101276X
[28] S. Vaes and A. Van Daele, Operator Algebras and Mathematical Physics (Theta, Bucharest, 2003) pp. 379–400. · Zbl 1247.46061
[29] DOI: 10.1142/S0129167X96000086 · Zbl 0876.46044 · doi:10.1142/S0129167X96000086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.