×

Holomorphic realization of unitary representations of Banach-Lie groups. (English) Zbl 1282.22012

Huckleberry, Alan (ed.) et al., Lie groups: structure, actions, and representations. In honor of Joseph A. Wolf on the occasion of his 75th birthday. New York, NY: Birkhäuser/Springer (ISBN 978-1-4614-7192-9/hbk; 978-1-4614-7193-6/ebook). Progress in Mathematics 306, 185-223 (2013).
This paper is part of a long-term research project of the author aiming at a systematic study of unitary representations of Banach-Lie groups. In this paper the author extends the classification of complex bundle structures from finite dimensional Lie groups to Banach-Lie groups. In Section 2 the author studies holomorphic Banach bundles; in Section 3 he investigates Hilbert spaces of holomorphic sections. The existence of analytic vectors is established and a realization result for unitary representations by holomorphic sections is given. In Section 4 the theory is applied to the construction of positive energy representations.
For the entire collection see [Zbl 1276.00017].

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods

References:

[1] Arveson, W., On groups of automorphisms of operator algebras, J. Funct. Anal., 15, 217-243 (1974) · Zbl 0296.46064
[2] Beltiţă, D., Complex homogeneous spaces of pseudo-restricted groups, Math. Res. Lett., 10, 459-467 (2003) · Zbl 1044.58011
[3] Beltiţă, D., On Banach-Lie algebras, spectral decompositions and complex polarizations, in Operator Theory: Advances and Applications153, Birkhäuser, Basel; 13-38. · Zbl 1063.58001
[4] Beltiţă, D., Integrability of analytic almost complex structures on Banach manifolds, Annals of Global Anal. and Geom., 28, 59-73 (2005) · Zbl 1081.32016
[5] Beltiţă, D.; Galé, J., Holomorphic geometric models for representations of C ∗ -algebras, J. Funct. Anal., 255, 2888-2932 (2008) · Zbl 1166.22012
[6] Beltiţă, D.; Ratiu, T. S., Geometric representation theory for unitary groups of operator algebras, Advances in Math., 208, 299-317 (2007) · Zbl 1108.22008
[7] Beltiţă, D.; Ratiu, T. S.; Tumpach, A. B., The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal., 247, 138-168 (2007) · Zbl 1120.22007
[8] Bertram, W., and J. Hilgert, Reproducing kernels on vector bundles, in Lie Theory and Its Applications in Physics III, World Scientific, Singapore, 1998; 43-58.
[9] Bourbaki, N., Espaces vectoriels topologiques. Chap.1 à 5, Springer-Verlag, Berlin, 2007 · Zbl 1106.46003
[10] Boyer, R., Representations of the Hilbert Lie group \[U(\mathcal{H})_2 \], Duke Math. J., 47, 325-344 (1980) · Zbl 0462.22009
[11] Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Éditions Gabay, 1996.
[12] Foias, C.; Vasilescu, F.-H., On the spectral theory of commutators, J. Math. Anal. Appl., 31, 473-486 (1970) · Zbl 0175.13604
[13] Glöckner, H.; Neeb, K.-H., Banach-Lie quotients, enlargibility, and universal complexifications, J. reine angew. Math., 560, 1-28 (2003) · Zbl 1029.22029
[14] Hewitt, E.; Ross, K. A., Abstract Harmonic Analysis II (1970), Berlin, Heidelberg, New York: Springer Verlag, Berlin, Heidelberg, New York · Zbl 0213.40103
[15] Jørgensen, P. E. T., Spectral theory for infinitesimal generators of one-parameter groups of isometries: the min-max principle and compact perturbations, J. Math. Anal. Appl., 90, 343-370 (1982) · Zbl 0504.46048
[16] Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan, 20, 638-642 (1968) · Zbl 0165.40504
[17] Kobayashi, T., Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci., 41, 497-549 (2005) · Zbl 1085.22010
[18] —, Propagation of multiplicity-free property for holomorphic vector bundles, arXiv:math.RT/0607004v2, 23 Jul 2011; in this volume
[19] Lempert, L., The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc., 12, 775-793 (1999) · Zbl 0926.32048
[20] Lisiecki, W., A classification of coherent state representations of unimodular Lie groups, Bull. Amer. Math. Soc., 25, 37-43 (1991) · Zbl 0736.22008
[21] Monastyrski, M.; Pasternak-Winiarski, Z., Maps on complex manifolds into Grassmann spaces defined by reproducing kernels of Bergman type, Demonstratio Math., 30, 465-474 (1997) · Zbl 0889.32026
[22] Müller, C.; Neeb, K.-H.; Seppänen, H., Borel-Weil Theory for Root Graded Banach-Lie groups, Int. Math. Res. Notices, 2010, 783-823 (2010) · Zbl 1187.22017
[23] Neeb, K.-H. Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000.
[24] —, Representations of infinite-dimensional groups, pp. 131-178; in Infinite Dimensional Kähler Manifolds, Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001. · Zbl 0995.22007
[25] —, A complex semigroup approach to group algebras of infinite-dimensional Lie groups, Semigroup Forum77 (2008), 5-35. · Zbl 1146.22012
[26] —, Semibounded unitary representations of infinite-dimensional Lie groups, in Infinite Dimensional Harmonic Analysis IV , Eds. J. Hilgert et al, World Scientific, 2009; 209-222. · Zbl 1167.22013
[27] —, On differentiable vectors for representations of infinite-dimensional Lie groups, J. Funct. Anal.259 (2010), 2814-2855. · Zbl 1204.22016
[28] —, On analytic vectors for unitary representations of infinite-dimensional Lie groups, Ann. Inst. Fourier61:5 (2011), 1441-1476. arXiv:math.RT.1002.4792v1, 25 Feb 2010.
[29] —, Semibounded representations and invariant cones in infinite-dimensional Lie algebras, Confluentes Math.2:1 (2010), 37-134. · Zbl 1186.22023
[30] —, Semibounded representations of hermitian Lie groups, Travaux mathematiques, 21 (2012), 29-109. · Zbl 1525.22010
[31] Odzijewicz, A., On reproducing kernels and quantization of states, Comm. Math. Phys., 114, 577-597 (1988) · Zbl 0645.53044
[32] —, Coherent states and geometric quantization, Comm. Math. Phys.150:2 (1992), 385-413. · Zbl 0768.58022
[33] Rădulescu, F., Spectral properties of generalized multipliers, J. Oper. Theory, 14, 277-289 (1985) · Zbl 0588.47006
[34] Rudin, W., Functional Analysis, McGraw Hill, 1973. · Zbl 0253.46001
[35] Sinclair, A. M., Eigenvalues in the boundary of the numerical range, Pac. J. Math., 35, 231-234 (1970) · Zbl 0184.16202
[36] Takesaki, M., Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences 125, Operator Algebras and Non-commutative Geometry 6, Springer-Verlag, Berlin, 2003.
[37] Tirao, J. A.; Wolf, J., Homogeneous holomorphic vector bundles, Indiana University Math. Journal, 20, 15-31 (1970) · Zbl 0197.49801
[38] Upmeier, H., Symmetric Banach Manifolds and Jordan C^∗ -algebras, North-Holland Mathematics Studies, 104. Notas de Matemàtica 96, North-Holland Publishing Co., Amsterdam, 1985. · Zbl 0561.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.