×

Improvement of the lower bound in the Erdös-Hajnal combinatorial problem. (English. Russian original) Zbl 1281.05099

Dokl. Math. 79, No. 3, 349-350 (2009); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 426, No. 2, 177-178 (2009).
In 1961 Erdős and Hajnal posed the problem of finding the minimum possible number \(m(n,r)\) of edges in an \(n\)-uniform hypergraph with a chromatic number large than \(r\). Later, Erdős proved the first nontrivial bounds for \(m(n, 2)\), which are easy to extend to arbitrary \(r\).
Several asymptotic bounds for \(m(n,r)\) have been obtained over the last year. For arbitrary \(n\geq 2\) and \(r\geq 2\), the author has shown that \[ m(n,r)\geq (\sqrt 3-1)\left({n}{\ln n}\right)^{1/2} r^{n-1}. \] A. Pluhár has improved that result by showing for many values of \(r\) \[ m(n,r)\geq \frac 1{\sqrt{4\pi e}}n^{\frac 12-\frac 1{2r}}r^{n-1}. \]
In this paper the following more accurate argument improving this result is stated.
Theorem 1. For all positive integers \(n\geq 2\) and \(r\geq 2\), \[ m(n,r)\geq \left(\pi^{\frac 1r}e^{\frac 1{12(n-1)}}\right) \frac 1{e\sqrt{2\pi}}(n-1)^{\frac 12-\frac 1{2r}}r^{n+\frac2r}. \]

MSC:

05C65 Hypergraphs
05C15 Coloring of graphs and hypergraphs
Full Text: DOI

References:

[1] P. Erdös and A. Hajnal, Acta Math. Acad. Sci. Hung. 12, 87–123 (1961). · Zbl 0201.32801 · doi:10.1007/BF02066676
[2] P. Erdös, in Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Utilitas Mathematica, Vinnipeg 1979), pp. 19–37.
[3] P. Erdös, Nord. Mat. Tidskr. 11, 5–10 (1963).
[4] P. Erdös, Acta Math. Acad. Sci. Hung. 15, 445–447 (1964). · Zbl 0201.33704 · doi:10.1007/BF01897152
[5] A. V. Kostochka, in More Sets, Graphs, and Numbers (Springer-Verlag, Budapest, 2006), Vol. 15, pp. 175–198.
[6] W. M. Schmidt, Acta Math. Acad. Sci. Hung. 15, 373–374 (1964). · Zbl 0143.02501 · doi:10.1007/BF01897145
[7] J. Beck, Discrete Math. 17(2), 127–131 (1977). · Zbl 0366.05042 · doi:10.1016/0012-365X(77)90140-6
[8] J. Beck, Discrete Math. 24(2), 127–137 (1978). · Zbl 0429.05055 · doi:10.1016/0012-365X(78)90191-7
[9] J. Radhakrishnan and A. Srinivasan, Random Struct. Algorithms 16(1), 4–32 (2000). · Zbl 0942.05024 · doi:10.1002/(SICI)1098-2418(200001)16:1<4::AID-RSA2>3.0.CO;2-2
[10] N. Alon, Graphs Combinatorics 1, 387–389 (1985). · Zbl 0609.05054 · doi:10.1007/BF02582966
[11] A. V. Kostochka, Random Structures Algorithms 24(1), 1–10 (2004). · Zbl 1031.05051 · doi:10.1002/rsa.10109
[12] D. A. Shabanov, httr://da.fizteh.ru/staff/shabanov.html
[13] A. Pluhár, http://www.inf.u-szeged.hu/ pluhar/epub.htm
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.