×

Multiplication operators on vector-valued function spaces. (English) Zbl 1280.47044

This paper develops around the following general theme. Let \(V\) be a vector space of (scalar-valued or vector-valued) functions on an appropriate set and let \(A\) be an algebra of scalar-valued functions on the same set. What properties of a linear operator \(T:V\rightarrow V\) guarantee that it is an operator of multiplication by a function in \(A?\) In this respect, the authors consider a Banach function space \(E\) on a probability measure space \(\left( \Omega,\Sigma,\mu \right) \) and the Köthe-Bochner space \(E\left( X\right) \) on a given Banach space \(X\). They define a multiplication operator \(T\) on \(E\left( X\right) \) to be a map \(T:E\left( X\right) \rightarrow E\left( X\right) \) for which there exists a function \(w\in L^{\infty}\left(\mu\right) \) such that \[ Tf=wf\text{ for all }f\in E\left( X\right) . \] They show that a linear operator \(T:E\left( X\right) \rightarrow E\left( X\right) \) is a multiplication operator if and only if \(T\) commutes with \(L^{\infty}\left(\mu\right) \) and leaves invariant the cyclic subspaces generated by constant functions in \(E\left( X\right) \). An alternative characterization of multiplication operators on \(E\left( X\right) \) is obtained as a consequence. Namely, a necessary and sufficient condition for an operator \(T:E\left( X\right) \rightarrow E\left( X\right) \) to be a multiplication operator is that \(T\) satisfies a functional equation introduced in [J. M. Calabuig, J. Rodríguez and E. A. Sánchez-Pérez, “Multiplication operators in Köthe-Bochner spaces”, J. Math. Anal. Appl. 373, No. 1, 316–321 (2011; Zbl 1206.47026)]. For more details, the reader is encouraged to consult this interesting paper.

MSC:

47B38 Linear operators on function spaces (general)
46G10 Vector-valued measures and integration
46B42 Banach lattices
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)

Citations:

Zbl 1206.47026

References:

[1] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002. · Zbl 1022.47001
[2] Y. A. Abramovich, E. L. Arenson, and A. K. Kitover, Banach \?(\?)-modules and operators preserving disjointness, Pitman Research Notes in Mathematics Series, vol. 277, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. · Zbl 0795.47024
[3] Ju. A. Abramovič, A. I. Veksler, and A. V. Koldunov, Operators that preserve disjunction, Dokl. Akad. Nauk SSSR 248 (1979), no. 5, 1033 – 1036 (Russian).
[4] J. M. Calabuig, J. Rodríguez, and E. A. Sánchez-Pérez, Multiplication operators in Köthe-Bochner spaces, J. Math. Anal. Appl. 373 (2011), no. 1, 316 – 321. · Zbl 1206.47026 · doi:10.1016/j.jmaa.2010.07.038
[5] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. · Zbl 0369.46039
[6] Don Hadwin and Mehmet Orhon, Reflexivity and approximate reflexivity for bounded Boolean algebras of projections, J. Funct. Anal. 87 (1989), no. 2, 348 – 358. · Zbl 0716.47026 · doi:10.1016/0022-1236(89)90014-1
[7] Sten Kaijser, Some representation theorems for Banach lattices, Ark. Mat. 16 (1978), no. 2, 179 – 193. · Zbl 0407.46021 · doi:10.1007/BF02385993
[8] Irving Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839 – 858. · Zbl 0051.09101 · doi:10.2307/2372552
[9] M. A. Krasnosel\(^{\prime}\)skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
[10] Pei-Kee Lin, Köthe-Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004. · Zbl 1054.46003
[11] Mehmet Orhon, The ideal center of the dual of a Banach lattice, Positivity 14 (2010), no. 4, 841 – 847. · Zbl 1220.47055 · doi:10.1007/s11117-010-0057-9
[12] B. de Pagter and W. J. Ricker, Bicommutants of algebras of multiplication operators, Proc. London Math. Soc. (3) 72 (1996), no. 2, 458 – 480. · Zbl 0910.47037 · doi:10.1112/plms/s3-72.2.458
[13] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. · Zbl 0296.47023
[14] A. I. Veksler, Banach cyclic spaces, and Banach lattices, Dokl. Akad. Nauk SSSR 213 (1973), 770 – 773 (Russian). · Zbl 0289.46008
[15] A. W. Wickstead, Banach lattices with topologically full centre, Vladikavkaz. Mat. Zh. 11 (2009), no. 2, front matter, 50 – 60 (English, with English and Russian summaries). · Zbl 1324.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.