×

Density in spaces of interpolation by Hankel translates of a basis function. (English) Zbl 1280.46014

Summary: The function spaces \(Y_m\) \((m \in \mathbb Z_+)\), arising in the theory of interpolation by Hankel translates of a basis function, as developed by the authors elsewhere, are defined through a seminorm which is expressed in terms of the Hankel transform of each function and involves a weight \(w\). At least two special classes of weights allow to write these indirect seminorms in direct form, that is, in terms of the function itself rather than its Hankel transform. In this paper, we give fairly general conditions on \(w\) which ensure that the Zemanian spaces \(\mathfrak{B}_{\mu}\) and \(\mathfrak{H}_{\mu}\) \((\mu > -1/2)\) are dense in \(Y_m\) \((m \in \mathbb Z_+)\). These conditions are shown to be satisfied by the weights giving rise to direct seminorms of the so-called type II.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citations:

Zbl 1262.41001

References:

[1] A. H. Zemanian, “A distributional Hankel transformation,” SIAM Journal on Applied Mathematics, vol. 14, pp. 561-576, 1966. · Zbl 0154.13803 · doi:10.1137/0114049
[2] A. H. Zemanian, “The Hankel transformation of certain distributions of rapid growth,” SIAM Journal on Applied Mathematics, vol. 14, pp. 678-690, 1966. · Zbl 0154.13804 · doi:10.1137/0114056
[3] I. I. Hirschman, Jr., “Variation diminishing Hankel transforms,” Journal d’Analyse Mathématique, vol. 8, pp. 307-336, 1961. · Zbl 0099.31301 · doi:10.1007/BF02786854
[4] F. M. Cholewinski, “A Hankel convolution complex inversion theory,” Memoirs of the American Mathematical Society, vol. 58, p. 67, 1965. · Zbl 0137.30901
[5] D. T. Haimo, “Integral equations associated with Hankel convolutions,” Transactions of the American Mathematical Society, vol. 116, pp. 330-375, 1965. · Zbl 0135.33502 · doi:10.2307/1994121
[6] J. de Sousa Pinto, “A generalised Hankel convolution,” SIAM Journal on Mathematical Analysis, vol. 16, no. 6, pp. 1335-1346, 1985. · Zbl 0592.46038 · doi:10.1137/0516097
[7] I. Marrero and J. J. Betancor, “Hankel convolution of generalized functions,” Rendiconti di Matematica e delle sue Applicazioni, vol. 15, no. 3, pp. 351-380, 1995. · Zbl 0833.46026
[8] C. A. Micchelli, “Interpolation of scattered data: distance matrices and conditionally positive definite functions,” Constructive Approximation, vol. 2, no. 1, pp. 11-22, 1986. · Zbl 0625.41005 · doi:10.1007/BF01893414
[9] W. Madych and S. Nelson, “Multivariate interpolation: a variational theory,” Unpublished Manuscript, 1983.
[10] W. R. Madych and S. A. Nelson, “Multivariate interpolation and conditionally positive definite functions,” Approximation Theory and Its Applications, vol. 4, no. 4, pp. 77-89, 1988. · Zbl 0703.41008
[11] W. R. Madych and S. A. Nelson, “Multivariate interpolation and conditionally positive definite functions-II,” Mathematics of Computation, vol. 54, no. 189, pp. 211-230, 1990. · Zbl 0859.41004 · doi:10.2307/2008691
[12] W. Light and H. Wayne, “Spaces of distributions, interpolation by translates of a basis function and error estimates,” Numerische Mathematik, vol. 81, no. 3, pp. 415-450, 1999. · Zbl 0918.65007 · doi:10.1007/s002110050398
[13] R. Schaback and Z. Wu, “Operators on radial functions,” Journal of Computational and Applied Mathematics, vol. 73, no. 1-2, pp. 257-270, 1996. · Zbl 0857.42004 · doi:10.1016/0377-0427(96)00047-7
[14] C. Arteaga and I. Marrero, “A scheme for interpolation by Hankel translates of a basis function,” Journal of Approximation Theory, vol. 164, no. 12, pp. 1540-1576, 2012. · Zbl 1262.41001
[15] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, USA, 1971. · Zbl 0232.42007
[16] G. Gigante, “Transference for hypergroups,” Collectanea Mathematica, vol. 52, no. 2, pp. 127-155, 2001. · Zbl 0986.43006
[17] H. Corrada, K. Leeb, B. Klein, R. Klein, S. Iyengarc, and G. Wahbad, “Examining the relative influence of familial, genetic, and environmental covariate information in flexible risk models,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 20, pp. 8128-8133, 2009.
[18] C. Arteaga and I. Marrero, “Universal approximation by radial basis function networks of Delsarte translates,” Neural Networks, vol. 46, pp. 299-305, 2013. · Zbl 1296.41016
[19] C. Arteaga and I. Marrero, “Approximation in weighted p-mean by RBF networks of Delsarte translates,” Submitted Preprint, 2013. · Zbl 1296.41016
[20] C. Arteaga and I. Marrero, “Wiener’s tauberian theorems for the Fourier-Bessel transformation and uniform approximation by RBF networks of Delsarte translates,” Submitted Preprint, 2013. · Zbl 1317.41014
[21] J. Levesley and W. Light, “Direct form seminorms arising in the theory of interpolation by translates of a basis function,” Advances in Computational Mathematics, vol. 11, no. 2-3, pp. 161-182, 1999. · Zbl 0939.41006 · doi:10.1023/A:1018971808961
[22] C. Arteaga and I. Marrero, “Direct form seminorms arising in the theory of interpolation by Hankel translates of a basis function,” Advances in Computational Mathematics, 2013. · Zbl 1311.46029 · doi:10.1007/s10444-013-9303-6
[23] J. J. Betancor and I. Marrero, “The Hankel convolution and the Zemanian spaces \beta \mu and \beta \(^{\prime}\)\mu ,” Mathematische Nachrichten, vol. 160, pp. 277-298, 1993. · Zbl 0796.46023 · doi:10.1002/mana.3211600113
[24] A. H. Zemanian, Generalized Integral Transformations, Interscience Publishers, 1968. · Zbl 0181.12701
[25] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms, McGraw-Hill, 1954. · Zbl 0058.34103
[26] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 of Applied Mathematics Series, 9th printing, National Bureau of Standards, 1964. · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.