×

Liouville type theorem to an integral system in the half-space. (English) Zbl 1280.45003

Summary: By using the moving plane method in integral forms, we establish a Liouville type theorem for a coupled integral system with Navier boundary values in the half-space. Furthermore, we prove that a Liouville type theorem is valid for the related differential system as well under an additional assumption by showing the equivalence between the involved differential and integral systems.

MSC:

45G15 Systems of nonlinear integral equations
Full Text: DOI

References:

[1] I. Birindelli, <em>Liouville theorems for elliptic inequalities and applications</em>,, Proc. Roy. Soc. Edinburgh Sect. A, 128, 1217 (1998) · Zbl 0919.35023 · doi:10.1017/S0308210500027293
[2] T. Branson, <em>Differential operators canonically associated to a conformal structure</em>,, Math. Scand., 2, 293 (1985) · Zbl 0596.53009
[3] L. Cao, <em>Liouville type theorems for poly-harmonic Navier problems</em>,, Discrete Contin. Dyn. Syst., 33, 3937 (2013) · Zbl 1279.35025 · doi:10.3934/dcds.2013.33.3937
[4] L. Cao, <em>A Liouville-type theorem for an integral equation on a half-space \(R^n_+\), </em>, J. Math. Anal. Appl., 389, 1365 (2012) · Zbl 1241.45004 · doi:10.1016/j.jmaa.2012.01.015
[5] W. Chen, <em>Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations</em>,, Discrete Contin. Dyn. Syst., suppl., 164 (2005) · Zbl 1147.45301
[6] W. Chen, <em>Classification of positive solutions for nonlinear differential and integral systems with critical exponents</em>,, Acta Math. Sci. Ser. B Engl. Ed., 29, 949 (2009) · Zbl 1212.35103 · doi:10.1016/S0252-9602(09)60079-5
[7] W. Chen, <em>Super polyharmonic property of solutions for PDE systems and its applications</em>,, {Commun. Pure Appl. Anal., 12, 2497 (2013)} · Zbl 1270.35224 · doi:10.3934/cpaa.2013.12.2497
[8] W. Chen, <em>Classification of solutions for an integral equation</em>,, Comm. Pure Appl. Math., 59, 330 (2006) · Zbl 1093.45001 · doi:10.1002/cpa.20116
[9] W. Chen, <em>On the stationary solutions of the 2D Doi-Onsager model</em>,, Nonlinear Anal., 73, 2410 (2010) · Zbl 1217.34032 · doi:10.1016/j.na.2010.06.012
[10] Z. Chen, <em> Potential theory for elliptic systems</em>,, Ann. Probab., 24, 293 (1996) · Zbl 0854.60062 · doi:10.1214/aop/1042644718
[11] Z. Djadli, <em>Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications</em>,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 387 (2002) · Zbl 1150.53012
[12] P. Esposito, <em>Mountain pass critical points for Paneitz-Branson operators</em>,, Calc. Var. Partial Differential Equations, 15, 493 (2002) · Zbl 1221.35128 · doi:10.1007/s005260100134
[13] Y. Fang, <em>A Liouville type theorem for poly-harmonic Dirichlet problems in a half space</em>,, Adv. Math., 229, 2835 (2012) · Zbl 1250.35051 · doi:10.1016/j.aim.2012.01.018
[14] D. G. de Figueiredo, <em> A Liouville-type theorem for elliptic systems</em>,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21, 387 (1994) · Zbl 0820.35042
[15] X. Huang, <em>Symmetry and monotonicity for integral equation systems</em>,, Nonlinear Anal. Real World Appl., 12, 3515 (2011) · Zbl 1231.45012 · doi:10.1016/j.nonrwa.2011.06.012
[16] C. Jin, <em>Symmetry of solutions to some systems of integral equations</em>,, Proc. Amer. Math. Soc., 1661 (2006) · Zbl 1156.45300 · doi:10.1090/S0002-9939-05-08411-X
[17] Y. Lei, <em>Radial symmetry and decay rates of positive solutions of a wolff type integral system</em>,, Proc. Amer. Math. Soc., 140, 541 (2012) · Zbl 1241.45005 · doi:10.1090/S0002-9939-2011-11401-1
[18] S. Lenhart, <em>A system of nonlinear partial differential equations arising in the optimal control of stochastic systems with switching costs</em>,, SIAM J. Appl. Math., 43, 465 (1983) · Zbl 0511.93077 · doi:10.1137/0143030
[19] C. Li, <em>Uniqueness of positive bound states to shrödinger systems with critical exponents</em>,, SIAM J. Math. Anal., 40, 1049 (2008) · Zbl 1167.35347 · doi:10.1137/080712301
[20] D. Li, <em>An integral equation on half space</em>,, Proc. Amer. Math. Soc., 138, 2779 (2010) · Zbl 1200.45001 · doi:10.1090/S0002-9939-10-10368-2
[21] J. Liu, <em>Liouville-type theorems for polyharmonic systems in \(\mathbbR^n\)</em>,, J. Differential Equations, 225, 685 (2006) · Zbl 1147.35316 · doi:10.1016/j.jde.2005.10.016
[22] L. Ma, <em>A Liouville type theorem for an integral system</em>,, Commun. Pure Appl. Anal., 5, 855 (2006) · Zbl 1134.45007 · doi:10.3934/cpaa.2006.5.855
[23] E. Mitidieri, <em>Nonexistence of positive solutions of semilinear elliptic systems in \(\mathbbR^n\)</em>,, Differential Integral Equations, 9, 465 (1996) · Zbl 0848.35034
[24] S. Nazarov, <em>A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners</em>,, J. Differential Equations, 233, 151 (2007) · Zbl 1108.35043 · doi:10.1016/j.jde.2006.09.018
[25] L. Peletier, <em>Nonlinear eigenvalue problems for higher-order model equations,</em>, in (2006) · Zbl 1198.34023
[26] L. Peletier, “Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and Their Applications. 45,”, Birkhauser Boston (2001) · Zbl 1076.34515
[27] P. Peter, <em>Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems</em>,, Duke Math. J., 139, 555 (2007) · Zbl 1146.35038 · doi:10.1215/S0012-7094-07-13935-8
[28] W. Reichel, <em>A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems</em>,, Math. Z., 261, 805 (2009) · Zbl 1167.35014 · doi:10.1007/s00209-008-0352-3
[29] W. Reichel, <em>Existence of solutions to nonlinear, subcritical higher order elliptic Dirichlet problems</em>,, J. Differential Equations, 248, 1866 (2010) · Zbl 1185.35066 · doi:10.1016/j.jde.2009.09.012
[30] J. Serrin, <em>Nonexistence of positive solutions of Lane-Emden systems</em>,, Differential Integral Equations, 9, 635 (1996) · Zbl 0868.35032
[31] B. Sirakov, <em>Existence results and a priori bounds for higher order elliptic equations and systems</em>,, J. Math. Pures Appl., 89, 114 (2008) · Zbl 1180.35214 · doi:10.1016/j.matpur.2007.10.003
[32] J. B. Van den Berg, <em>The phase-plane picture for a class of fourth-order conservative differential equations</em>,, J. Differential Equations, 161, 110 (2000) · Zbl 0952.34026 · doi:10.1006/jdeq.1999.3698
[33] J. Wei, <em>Classification of solutions of higher order conformally invariant equations</em>,, Math. Ann., 313, 207 (1999) · Zbl 0919.35023 · doi:10.1017/S0308210500027293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.