×

Hermite-Hadamard-type inequalities for \(r\)-convex functions based on the use of Riemann-Liouville fractional integrals. (English) Zbl 1280.26044

Ukr. Math. J. 65, No. 2, 193-211 (2013) and Ukr. Mat. Zh. 65, No. 2, 175-191 (2013).
Summary: By using two fundamental fractional integral identities, we deduce some new Hermite-Hadamard-type inequalities for differentiable \(r\)-convex functions and twice-differentiable \(r\)-convex functions involving Riemann-Liouville fractional integrals.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] D. S. Mitrinović and I. B. Lacković, “Hermite and convexity,” Aequat. Math., 28, 229-232 (1985). · Zbl 0572.26004 · doi:10.1007/BF02189414
[2] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Acad. Press Inc., San Diego (1992). · Zbl 0749.26004
[3] S. Abramovich, J. Barić, and J. Pečarić, “Fejer and Hermite-Hadamard-type inequalities for superquadratic functions,” J. Math. Anal. Appl., 344, 1048-1056 (2008). · Zbl 1141.26006 · doi:10.1016/j.jmaa.2008.03.051
[4] J. Cal, J. Carcamob, and L. Escauriaza, “A general multidimensional Hermite-Hadamard-type inequality,” J. Math. Anal. Appl., 356, 659-663 (2009). · Zbl 1170.26009 · doi:10.1016/j.jmaa.2009.03.044
[5] M. E. Ödemir, M. Avci, and E. Set, “On some inequalities of Hermite-Hadamard type via m-convexity,” Appl. Math. Lett., 23, 1065-1070 (2010). · Zbl 1195.26042 · doi:10.1016/j.aml.2010.04.037
[6] M. E. Ödemir, M. Avci, and H. Kavurmaci, “Hermite-Hadamard-type inequalities via (α, <Emphasis Type=”Italic“>m)-convexity,” Comput. Math. Appl., 61, 2614-2620 (2011). · Zbl 1221.26032 · doi:10.1016/j.camwa.2011.02.053
[7] S. S. Dragomir, “Hermite-Hadamard’s type inequalities for operator convex functions,” Appl. Math. Comput., 218, 766-772 (2011). · Zbl 1239.47009 · doi:10.1016/j.amc.2011.01.056
[8] S. S. Dragomir, “Hermite-Hadamard’s type inequalities for convex functions of self-adjoint operators in Hilbert spaces,” Linear Algebra Appl., 436, 1503-1515 (2012). · Zbl 1248.47017 · doi:10.1016/j.laa.2011.08.050
[9] M. Z. Sarikaya and N. Aktan, “On the generalization of some integral inequalities and their applications,” Math. Comput. Model., 54, 2175-2182 (2011). · Zbl 1235.26015 · doi:10.1016/j.mcm.2011.05.026
[10] Z. Xiao, Z. Zhang, and Y. Wu, “On weighted Hermite-Hadamard inequalities,” Appl. Math. Comput., 218, 1147-1152 (2011). · Zbl 1229.26034 · doi:10.1016/j.amc.2011.03.081
[11] M. Bessenyei, “The Hermite-Hadamard inequality in Beckenbach’s setting,” J. Math. Anal. Appl., 364, 366-383 (2010). · Zbl 1184.26018 · doi:10.1016/j.jmaa.2009.11.015
[12] K. Tseng, S. Hwang, and K. Hsu, “Hadamard-type and Bullen-type inequalities for Lipschitzian functions and their applications,” Comput. Math. Appl. (doi:10.1016/j.camwa.2011.12.076) (2012). · Zbl 1252.26024
[13] C. P. Niculescu, “The Hermite-Hadamard inequality for log-convex functions,” Nonlin. Anal.: TMA, 75, 662-669 (2012). · Zbl 1236.26010 · doi:10.1016/j.na.2011.08.066
[14] D. Baleanu, J. A. T. Machado, and A. C.-J. Luo, Fractional Dynamics and Control, Springer (2012). · Zbl 1248.47017
[15] K. Diethelm, “The analysis of fractional differential equations,” Lect. Notes Math. (2010). · Zbl 1215.34001
[16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006). · Zbl 1092.45003
[17] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Sci. Publ., Cambridge (2009). · Zbl 1188.37002
[18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York (1993). · Zbl 0789.26002
[19] M. W. Michalski, Derivatives of Noninteger Order and Their Applications, Diss. Math., Inst. Math. Pol. Acad. Sci. (1993). · Zbl 0880.26007
[20] I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999). · Zbl 0924.34008
[21] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin (2011).
[22] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Başak, “Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,” Math. Comput. Model. (doi:10.1016/j.mcm.2011.12.048) (2012). · Zbl 1286.26018
[23] J. Wang, X. Li, and C. Zhu, “Refinements of Hermite-Hadamard-type inequalities involving fractional integrals,” Bull. Belg. Math. Soc. Simon Stevin (to appear). · Zbl 1282.26013
[24] E. Set, “New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals,” Comput. Math. Appl., 63, 1147-1154 (2012). · Zbl 1247.26038 · doi:10.1016/j.camwa.2011.12.023
[25] J. Wang, X. Li, M. Fečkan, and Y. Zhou, “Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity,” Appl. Anal. (http://dx.doi.org/10.1080/00036811.2012.727986) (2012). · Zbl 1285.26013
[26] J. Wang, J. Deng, and M. Fečkan, “Exploring s-e-condition and applications to some Ostrowski-type inequalities via Hadamard fractional integrals,” Math. Slovaca (to appear). · Zbl 1349.26021
[27] M. Avriel, “<Emphasis Type=”Italic“>r-convex function,” Math. Program., 2, 309-323 (1972). · Zbl 0249.90063 · doi:10.1007/BF01584551
[28] C. E. M. Pearce, J. Pečarić, and V. Šimić, “Stolarsky means and Hadamard’s inequality,” J. Math. Anal. Appl., 220, 99-109 (1998). · Zbl 0909.26011 · doi:10.1006/jmaa.1997.5822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.