×

Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. (English) Zbl 1279.65130

Summary: The adaptive finite element method (AFEM) for approximating solutions of boundary value and eigenvalue problems of partial differential equations is a numerical scheme that automatically and iteratively adapts the finite element space until a sufficiently accurate approximate solution is found. The adaptation process is based on a posteriori error estimators, and at each step of this process an algebraic problem (linear or nonlinear algebraic system or eigenvalue problem) has to be solved. In practical computations the solution of the algebraic problem cannot be obtained exactly. As a consequence, the algebraic error should be incorporated in the context of the AFEM and its a posteriori error estimators. The goal of this paper is to survey some existing approaches in the AFEM context that consider the interplay between the finite element discretization and the algebraic computation. We believe that a better understanding of this interplay is of great importance for the future development in the area of numerically solving large-scale real-world motivated problems.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35P15 Estimates of eigenvalues in context of PDEs
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI

References:

[1] R. A.Adams and J. J. F.Fournier. Sobolev Spaces, volume 140 of Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam, second edition, 2003. · Zbl 1098.46001
[2] M.Ainsworth and J. T.Oden. A posteriori error estimators for second order elliptic systems II. An optimal order process for calculating self‐equilibrating fluxes. Comput. Math. Appl., 26(9):75-87, 1993. · Zbl 0789.65083
[3] M.Ainsworth and J. T.Oden. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley‐Interscience [John Wiley & Sons], New York, 2000. · Zbl 1008.65076
[4] M.Ainsworth and T.Vejchodský. Fully computable robust a posteriori error bounds for singularly perturbed reaction‐diffusion problems. Numer. Math., 119(2):219-243, 2011. · Zbl 1229.65194
[5] M.Arioli. A stopping criterion for the conjugate gradient algorithm in a finite element method framework. Numer. Math., 97(1):1-24, 2004. · Zbl 1048.65029
[6] M.Arioli, E. H.Georgoulis, and D.Loghin. Stopping criteria for adaptive finite element solvers. SIAM J. Sci. Comput., 35(3): 1537-1559, 2013. · Zbl 1276.65077
[7] M.Arioli and D.Loghin. Stopping criteria for mixed finite element problems. Electron. Trans. Numer. Anal., 29:178-192, 2007/08. · Zbl 1392.65042
[8] M.Arioli, D.Loghin, and A. J.Wathen. Stopping criteria for iterations in finite element methods. Numer. Math., 99(3):381-410, 2005. · Zbl 1069.65124
[9] M.Arioli, E.Noulard, and A.Russo. Stopping criteria for iterative methods: applications to PDE’s. Calcolo, 38(2):97-112, 2001. · Zbl 1072.65045
[10] O.Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. · Zbl 0795.65014
[11] I.Babuška. Error‐bounds for finite element method. Numer. Math., 16:322-333, 1970/1971. · Zbl 0214.42001
[12] I.Babuška and J. E.Osborns. Finite element‐Galerkin approximation of the eigenvalue and eigenvectors of selfadjoint problems. Math. Comp., 52(186):275-297, 1989. · Zbl 0675.65108
[13] I.Babuška and J. E.Osborn. Eigenvalue Problems. Handbook of Numerical Analysis Vol. II. North Holland, Amsterdam, 1991.
[14] I.Babuška and W. C.Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal., 15(4):736-754, 1978. · Zbl 0398.65069
[15] I.Babuška and T.Strouboulis. The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2001. · Zbl 0995.65501
[16] I.Babuška and M.Vogelius. Feedback and adaptive finite element solution of one‐dimensional boundary value problems. Numer. Math., 44(1):75-102, 1984. · Zbl 0574.65098
[17] W.Bangerth and R.Rannacher. Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003. · Zbl 1020.65058
[18] R. E.Bank and L.Ridgway Scott. On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal., 26(6):1383-1394. · Zbl 0688.65062
[19] R. E.Bank and R. K.Smith. A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal., 30(4):921-935, 1993. · Zbl 0787.65078
[20] R. E.Bank and A.Weiser. Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44(170):283-301, 1985. · Zbl 0569.65079
[21] R.Becker. An adaptive finite element method for the Stokes equation including control of the iteration error. In H. G. Bock et al., editor, ENUMATH 97 (Heidelberg), pages 609-620. World Sci. Publ., Singapore, 1998. · Zbl 0968.65088
[22] R.Becker, C.Johnson, and R.Rannacher. Adaptive error control for multigrid finite element methods. Computing, 55(4):271-288, 1995. · Zbl 0848.65074
[23] R.Becker and S.Mao. An optimally convergent adaptive mixed finite element method. Numer. Math., 111(1):35-54, 2008. · Zbl 1159.65088
[24] R.Becker and S.Mao. Convergence and quasi‐optimal complexity of a simple adaptive finite element method. M2AN Math. Model. Numer. Anal., 43(6):1203-1219, 2009. · Zbl 1179.65139
[25] R.Becker, S.Mao, and Z.Shi. A convergent nonconforming adaptive finite element method with quasi‐optimal complexity. SIAM J. Numer. Anal., 47(6):4639-4659, 2010. · Zbl 1208.65154
[26] R.Becker, S.Mao, and Z.‐C.Shi. A convergent adaptive finite element method with optimal complexity. Electron. Trans. Numer. Anal., 30:291-304, 2008. · Zbl 1171.65073
[27] R.Becker and R.Rannacher. Weighted a posteriori error control in FE methods. In H. G. Bock et al., editor, ENUMATH 97 (Heidelberg), pages 621-637. World Sci. Publ., Singapore, 1998. · Zbl 0968.65083
[28] R.Becker and R.Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer., 10:1-102, 2001. · Zbl 1105.65349
[29] M.Berndt, T. A.Manteuffel, and S. F.McCormick. Local error estimates and adaptive refinement for first‐order system least squares (FOSLS). Electron. Trans. Numer. Anal., 6:35-43, 1997. · Zbl 0889.65112
[30] P.Binev, W.Dahmen, and R.DeVore. Adaptive finite element methods with convergence rates. Numer. Math., 97(2):219-268, 2004. · Zbl 1063.65120
[31] D.Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1-120, 2010. · Zbl 1242.65110
[32] D.Boffi, F.Gardini, and L.Gastaldi. Some remarks on eigenvalue approximation by finite elements. In Frontiers in Numerical Analysis - Durham 2010, volume 85 of Springer Lecture Notes in Computational Science and Engineering, pages 1-77. Springer‐Verlag, 2012. · Zbl 1252.65186
[33] J.Bramble, J.Pasciak, and J.Xu. Parallel multilevel preconditioners. Math. Comp., 55(191):1-22, 1990. · Zbl 0703.65076
[34] S. C.Brenner and C.Carstensen. Finite Element Methods. In E. Stein, R. de Borst, and T. J. R. Huges, editors, Encyclopedia of Computational Mechanics, Vol. I, pages 73-114. John Wiley and Sons Inc., New York, 2004. · Zbl 1190.76001
[35] S. C.Brenner and L. R.Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008. · Zbl 1135.65042
[36] H.Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011. · Zbl 1220.46002
[37] C.Burstedde and A.Kunoth. Fast iterative solution of elliptic control problems in wavelet discretization. J. Comput. Appl. Math., 196(1):299-319, 2006. · Zbl 1098.65074
[38] C.Burstedde and A.Kunoth. A wavelet‐based nested iteration‐inexact conjugate gradient algorithm for adaptively solving elliptic PDEs. Numer. Algorithms, 48(1‐3):161-188, 2008. · Zbl 1152.65108
[39] C.Carstensen. Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM Z. Angew. Math. Mech., 84(1):3-21, 2004. · Zbl 1073.65120
[40] C.Carstensen and S. A.Funken. Constants in Clément‐interpolation error and residual based a posteriori error estimates in finite element methods. East‐West J. Numer. Math., 8(3):153-175, 2000. · Zbl 0973.65091
[41] C.Carstensen and S. A.Funken. Fully reliable localized error control in the FEM. SIAM J. Sci. Comput., 21(4):1465-1484, 2000. · Zbl 0956.65099
[42] C.Carstensen and J.Gedicke. An oscillation‐free adaptive FEM for symmetric eigenvalue problems. Numer. Math., 118(3):401-427, 2011. · Zbl 1227.65106
[43] C.Carstensen and J.Gedicke. An adaptive finite element eigenvalue solver of asymptotic quasi‐optimal computational complexity. SIAM J. Numer. Anal., 50(3):1029-1057, 2012. · Zbl 1254.65123
[44] C.Carstensen, J.Gedicke, V.Mehrmann, and A.Międlar. An adaptive homotopy approach for non‐selfadjoint eigenvalue problems. Numer. Math., 119(3):557-583, 2011. · Zbl 1263.65106
[45] C.Carstensen and C.Merdon. Estimator competition for Poisson problems. J. Comput. Math., 28(3):309-330, 2010. · Zbl 1224.65253
[46] J. M.Cascon, C.Kreuzer, R. H.Nochetto, and K. G.Siebert. Quasi‐optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524-2550, 2008. · Zbl 1176.65122
[47] J.Céa. Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier (Grenoble), 14(fasc. 2):345-444, 1964. · Zbl 0127.08003
[48] F.Chatelin. Spectral Approximation of Linear Operators, volume 65 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1983 original (Academic Press, New York). · Zbl 1214.01004
[49] I.Cheddadi, R.Fučík, M. I.Prieto, and M.Vohralík. Computable a posteriori error estimates in the finite element method based on its local conservativity: Improvements using local minimization. In ESAIM: Proceedings, volume 24, pages 77-96. 2008. · Zbl 1156.65318
[50] Z.Chen. Finite Element Methods and Their Applications. Scientific Computation. Springer‐Verlag, Berlin, 2005. · Zbl 1082.65118
[51] P. G.Ciarlet. The Finite Element Method for Elliptic Problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original (North‐Holland, Amsterdam). · Zbl 0999.65129
[52] P.Deuflhard. Cascadic conjugate gradient methods for elliptic partial differential equations: algorithm and numerical results. In Domain Decomposition Methods in Scientific and Engineering Computing (University Park, PA, 1993), volume 180 of Contemp. Math., pages 29-42. Amer. Math. Soc., Providence, RI, 1994. · Zbl 0817.65090
[53] P.Deuflhard, P.Leinen, and H.Yserentant. Concepts of an adaptive hierarchical finite element code. IMPACT Comp. Sci. Eng, 1(1):3-35, 1989. · Zbl 0706.65111
[54] W.Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 33(3):1106-1124, 1996. · Zbl 0854.65090
[55] R. G.Durán, C.Padra, and R.Rodríguez. A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci., 13(8):1219-1229, 2003. · Zbl 1072.65144
[56] H.Elman, D.Silvester, and A.Wathen. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2005. · Zbl 1083.76001
[57] K.Eriksson, D.Estep, P.Hansbo, and C.Johnson. Introduction to adaptive methods for differential equations. Acta Numer., 4:105‐158, 1995. · Zbl 0829.65122
[58] A.Ern and M.Vohralík. Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput., 35(4): 1761Ð1791, 2013. · Zbl 1362.65056
[59] L. C.Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. · Zbl 1194.35001
[60] S.Ferraz‐Leite, C.Ortner, and D.Praetorius. Convergence of simple adaptive Galerkin schemes based on h ‐ h/2 error estimators. Numer. Math., 116(2):291-316, 2010. · Zbl 1198.65213
[61] J.Gedicke and C.Carstensen. A posteriori error estimators for non‐symmetric eigenvalue problems. Preprint 659, DFG Research Center MATHEON, Berlin, 2009.
[62] M. S.Gockenbach. Understanding and Implementing the Finite Element Method. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. · Zbl 1105.65112
[63] G. H.Golub and G.Meurant. Matrices, moments and quadrature. In Numerical Analysis 1993 (Dundee, 1993), volume 303 of Pitman Res. Notes Math. Ser., pages 105-156. Longman Sci. Tech., Harlow, 1994. · Zbl 0795.65019
[64] G. H.Golub and G.Meurant. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods. BIT, 37(3):687-705, 1997. · Zbl 0888.65050
[65] G. H.Golub and G.Meurant. Matrices, Moments and Quadrature with Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2010. · Zbl 1217.65056
[66] G. H.Golub and Z.Strakoš. Estimates in quadratic formulas. Numer. Algorithms, 8(2‐4):241-268, 1994. · Zbl 0822.65022
[67] T.Grätsch and K.‐J.Bathe. A posteriori error estimation techniques in practical finite element analysis. Comput. & Structures, 83(4‐5):235-265, 2005.
[68] S.Gratton, M.Mouffe, and P. L.Toint. Stopping rules and backward error analysis for boundconstrained optimization. Numer. Math., 119(1):163-187, 2011. · Zbl 1228.65088
[69] P.Grisvard. Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0695.35060
[70] W.Hackbusch. Elliptic Differential Equations, volume 18 of Springer Series in Computational Mathematics. Springer‐Verlag, Berlin, 1992. Translated from the author’s revision of the 1986 German original by Regine Fadiman and Patrick D. F. Ion.
[71] A.Hannukainen, R.Stenberg, and M.Vohralík. A unified framework for a posteriori error estimation for the Stokes problem. Numer. Math., 122(4):725-769, 2012. · Zbl 1301.76049
[72] H.Harbrecht and R.Schneider. On error estimation in finite element methods without having Galerkin orthogonality. Preprint 457, Berichtsreihe des SFB 611, Universität Bonn, 2009.
[73] M. R.Hestenes and E.Stiefel. Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards, 49:409-436, 1952. · Zbl 0048.09901
[74] U. L.Hetmaniuk and R. B.Lehoucq. Uniform accuracy of eigenpairs from a shift‐invert Lanczos method. SIAM J. Matrix Anal. Appl., 28(4):927-948, 2006. · Zbl 1130.65053
[75] V.Heuveline and R.Rannacher. A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comp. Math., 15(1‐4):107-138, 2001. · Zbl 0995.65111
[76] V.Heuveline and R.Rannacher. Adaptive FEM for eigenvalue problems with application in hydrodynamic stability analysis. In Advances in Numerical Mathematics, Proc. Int. Conf., Sept. 16‐17, 2005, Moscow. Institute of Numerical Mathematics, RAS, 2006.
[77] P.Jiránek, Z.Strakoš, and M.Vohralík. A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput., 32(3):1567-1590, 2010. · Zbl 1215.65168
[78] C.Johnson, R.Rannacher, and M.Boman. Numerics and hydrodynamic stability: toward error control in computational fluid dynamics. SIAM J. Numer. Anal., 32(4):1058-1079, 1995. · Zbl 0833.76063
[79] D.Kay and D.Silvester. The reliability of local error estimators for convection‐diffusion equations. IMA J. Numer. Anal., 21(1):107-122, 2001. · Zbl 0980.65116
[80] R. C.Kirby. From functional analysis to iterative methods. SIAM Rev., 52(2):269-293, 2010. · Zbl 1193.65201
[81] A. V.Knyazev. New estimates for Ritz vectors. Math. Comp., 66(219):985-995, 1997. · Zbl 0870.65045
[82] A. V.Knyazev and J. E.Osborn. New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal., 43(6):2647-2667, 2006. · Zbl 1111.65100
[83] C.Kreuzer and K. G.Siebert. Decay rates of adaptive finite elements with Dörfler marking. Numer. Math., 117(4):679-716, 2011. · Zbl 1219.65133
[84] P.Ladevèze. Comparaison de Modèles de Milieux Continus. PhD thesis, Université; Pierre et Marie Curie (Paris 6), 1975.
[85] M. G.Larson. A posteriori and a priori error analysis for finite element approximations of selfadjoint elliptic eigenvalue problems. SIAM J. Numer. Anal., 38(2):608-625, 2000. · Zbl 0974.65100
[86] P. D.Lax and A. N.Milgram. Parabolic equations. In Contributions to the Theory of Partial Differential Equations, Annals of Mathematics Studies, no. 33, pages 167-190. Princeton University Press, Princeton, N. J., 1954. · Zbl 0058.08703
[87] J.Liesen and Z.Strakoš. Krylov Subspace Methods. Principles and Analysis. Oxford University Press, Oxford, 2012.
[88] D.Loghin. Eigenvalue estimation by domain decomposition. Submitted for publication, 2012.
[89] Y.Maday and A. T.Patera. Numerical analysis of a posteriori finite element bounds for linear functional outputs. Math. Models Methods Appl. Sci., 10(5):785-799, 2000. · Zbl 1012.65109
[90] D.Mao, L.Shen, and A.Zhou. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math., 25(1‐3):135-160, 2006. · Zbl 1103.65112
[91] V.Mehrmann and A.Międlar. Adaptive computation of smallest eigenvalues of self‐adjoint elliptic partial differential equations. Numer. Linear Algebra Appl., 18(3):387-409, 2011. · Zbl 1249.65226
[92] D.Meidner, R.Rannacher, and J.Vihharev. Goal‐oriented error control of the iterative solution of finite element equations. J. Numer. Math., 17(2):143-172, 2009. · Zbl 1169.65340
[93] K.Mekchay and R. H.Nochetto. Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal., 43(5):1803-1827, 2005. · Zbl 1104.65103
[94] G.Meurant and Z.Strakoš. The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer., 15:471-542, 2006. · Zbl 1113.65032
[95] A.Międlar. Functional perturbation results and the balanced AFEM algorithm for self‐adjoint PDE eigenvalue problems. Preprint 817, DFG Research Center MATHEON, Berlin, 2011.
[96] A.Międlar. Inexact Adaptive Finite Element Methods for Elliptic PDE Eigenvalue Problems. PhD thesis, Technische Universität Berlin, 2011.
[97] P.Morin, R. H.Nochetto, and K. G.Siebert. Convergence of adaptive finite element methods. SIAM Rev., 44(4):631-658, 2002. Revised reprint of “Data oscillation and convergence of adaptive FEM”; [SIAM J. Numer. Anal. 38 (2000), no. 2, 466-488]. · Zbl 0970.65113
[98] P.Morin, R. H.Nochetto, and K. G.Siebert. Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comp., 72(243):1067-1097, 2003. · Zbl 1019.65083
[99] K.Neymeyr. A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl., 9(4):263-279, 2002. · Zbl 1071.65147
[100] R. H.Nochetto, K. G.Siebert, and A.Veeser. Theory of adaptive finite element methods: an introduction. In Multiscale, Nonlinear and Adaptive Approximation, pages 409-542. Springer, Berlin, 2009. · Zbl 1190.65176
[101] J. T.Oden and S.Prudhomme. Goal‐oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl., 41(5‐6):735-756, 2001. · Zbl 0987.65110
[102] J.Papež, J.Liesen, and Z.Strakoš. On distribution of the discretization and algebraic error in 1D Poisson model problem. Preprint 2012/03, MORE Research Project, 2012.
[103] A. T.Patera and E. M.Rønquist. A general output bound result: application to discretization and iteration error estimation and control. Math. Models Methods Appl. Sci., 11(4):685-712, 2001. · Zbl 1012.65110
[104] M.Picasso. A stopping criterion for the conjugate gradient algorithm in the framework of anisotropic adaptive finite elements. Commun. Numer. Meth. Engng., 25(4):339-355, 2009. · Zbl 1186.65149
[105] W.Prager and J. L.Synge. Approximations in elasticity based on the concept of function space. Quart. Appl. Math., 5:241-269, 1947. · Zbl 0029.23505
[106] A.Quarteroni and A.Valli. Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Springer‐Verlag, Berlin, 2008. · Zbl 1151.65339
[107] R.Rannacher. Error control in finite element computations. An introduction to error estimation and mesh‐size adaptation. In Error Control and Adaptivity in Scientific Computing (Antalya, 1998), volume 536 of NATO Sci. Ser. C Math. Phys. Sci., pages 247-278. Kluwer Acad. Publ., Dordrecht, 1999. · Zbl 0943.65123
[108] R.Rannacher. Adaptive finite element methods for partial differential equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 717-726, Beijing, 2002. Higher Ed. Press. · Zbl 1003.65130
[109] R.Rannacher. Adaptive finite element discretization of flow problems for goal‐oriented model reduction. In Computational Fluid Dynamics Review 2010, pages 51-70. World Sci. Publ., Hackensack, NJ, 2010.
[110] R.Rannacher. A short course on numerical simulation of viscous flow: discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems Series S, 5(6):1147-1194, 2012. · Zbl 1457.65132
[111] R.Rannacher, A.Westenberger, and W.Wollner. Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error. J. Numer. Math., 18(4):303-327, 2010. · Zbl 1222.65123
[112] P.‐A.Raviart and J.‐M.Thomas. Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, 1983. · Zbl 0561.65069
[113] S. I.Repin. A Posteriori Estimates for Partial Differential Equations, volume 4 of Radon Series on Computational and Applied Mathematics. Walter de Gruyter GmbH &; Co. KG, Berlin, 2008. · Zbl 1162.65001
[114] U.Rüde. Fully adaptive multigrid methods. SIAM J. Numer. Anal., 30(1):230-248, 1993. · Zbl 0849.65090
[115] U.Rüde. Error estimates based on stable splittings. In Domain Decomposition Methods in Scientific and Engineering Computing (University Park, PA, 1993), volume 180 of Contemp. Math., pages 111-118. Amer. Math. Soc., Providence, RI, 1994. · Zbl 0817.65113
[116] U.Rüde. On the multilevel adaptive iterative method. SIAM J. Sci. Comput., 15(3):577-586, 1994. · Zbl 0802.65035
[117] S.Sauter. Finite Elements for Elliptic Eigenvalue Problems: Lecture Notes for the Zürich Summerschool 2008. Preprint 12-08, Institut für Mathematik, Universität Zürich, 2008. http://www.math.uzh.ch/compmath/fileadmin/math/preprints/12_08.pdf.
[118] K.Segeth. A review of some a posteriori error estimates for adaptive finite element methods. Math. Comput. Simulation, 80(8):1589-1600, 2010. · Zbl 1196.65173
[119] V.Shaidurov and L.Tobiska. The convergence of the cascadic conjugate‐gradient method applied to elliptic problems in domains with re‐entrant corners. Math. Comp., 69(230):501-520, 2000. · Zbl 0947.65037
[120] D. J.Silvester and V.Simoncini. An optimal iterative solver for symmetric indefinite systems stemming from mixed approximation. ACM Trans. Math. Software, 37(4):Art. 42, 22, 2011. · Zbl 1365.65085
[121] P.Šolín. Partial Differential Equations and the Finite Element Method. Pure and Applied Mathematics (New York). Wiley‐Interscience [John Wiley & Sons], Hoboken, NJ, 2006. · Zbl 1092.65080
[122] R.Stevenson. Optimality of a standard adaptive finite element method. Found. Comput. Math., 7(2):245-269, 2007. · Zbl 1136.65109
[123] Z.StrakošandJ.Liesen. On numerical stability in large scale linear algebraic computations. ZAMM Z. Angew. Math. Mech., 85(5):307-325, 2005. · Zbl 1069.65030
[124] Z.Strakoš and P.Tichý. On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal., 13:56-80, 2002. · Zbl 1026.65027
[125] G.Strang and G. J.Fix. An Analysis of the Finite Element Method. Prentice‐Hall Inc., Englewood Cliffs, N. J., 1973. Prentice‐Hall Series in Automatic Computation. · Zbl 0356.65096
[126] J. L.Synge. The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, New York, 1957. · Zbl 0079.13802
[127] A.Veeser and R.Verfürth. Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal., 47(3):2387-2405, 2009. · Zbl 1195.65158
[128] T.Vejchodský. Complementarity based a posteriori error estimates and their properties. Math. Comput. Simulation, 82(10):2033-2046, 2012. · Zbl 1256.65097
[129] R.Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh‐Refinement Techniques. Wiley and Teubner, New York, Stuttgart, 1996. · Zbl 0853.65108
[130] M.Vohralík. Residual flux‐based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math., 111(1):121-158, 2008. · Zbl 1160.65059
[131] M.Vohralík. A Posteriori Error Estimates, Stopping Criteria, and Inexpensive Implementations for Error Control and Efficiency in Numerical Simulations. Habilitation Thesis, Université; Pierre et Marie Curie, 2010. https://who.rocq.inria.fr/Martin.Vohralik/Files/HdR_en.pdf
[132] M.Vohralík. A posteriori error estimates for efficiency and error control in numerical simulations. Lecture Notes, 2012. https://who.rocq.inria.fr/Martin.Vohralik/Enseig/APost/a_posteriori.pdf
[133] T. F.Walsh, G. M.Reese, and U. L.Hetmaniuk. Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Engrg., 196(37‐40):3614-3623, 2007. · Zbl 1173.74446
[134] A.Wathen. Preconditioning and convergence in the right norm. Int. J. Comput. Math., 84(8):1199-1209, 2007. · Zbl 1123.65033
[135] B. I.Wohlmuth and R. H.W. Hoppe. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart‐Thomas elements. Math. Comp., 68(228):1347-1378, 1999. · Zbl 0929.65094
[136] C.‐T.Wu and H. C.Elman. Analysis and comparison of geometric and algebraic multigrid for convection‐diffusion equations. SIAM J. Sci. Comput., 28(6):2208-2228, 2006. · Zbl 1133.65102
[137] H.Wu and Z.Chen. Uniform convergence of multigrid V‐cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A, 49(10):1405-1429, 2006. · Zbl 1112.65104
[138] A.Zeiser. On the optimality of the inexact inverse iteration coupled with adaptive finite element methods. Preprint 57, DFG‐SPP 1324, 2010.
[139] O. C.Zienkiewicz and J.Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg., 24(2):337-357, 1987. · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.