×

A parallel two-level finite element variational multiscale method for the Navier-Stokes equations. (English) Zbl 1278.65191

Summary: A combination method of two-grid discretization approach with a recent finite element variational multiscale algorithm for simulation of the incompressible Navier-Stokes equations is proposed and analyzed. The method consists of a global small-scale nonlinear Navier-Stokes problem on a coarse grid and local linearized residual problems in overlapped fine grid subdomains, where the numerical form of the Navier-Stokes equations on the coarse grid is stabilized by a stabilization term based on two local Gauss integrations at element level and defined by the difference between a consistent and an under-integrated matrix involving the gradient of velocity. By the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics

Software:

FreeFem++
Full Text: DOI

References:

[1] Toselli, A.; Widlund, O., Domain Decomposition Methods: Algorithms and Theory (2005), Springer: Springer Berlin · Zbl 1069.65138
[2] Hwang, F. N.; Cai, X. C., A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations, J. Comput. Phys., 204, 666-691 (2005) · Zbl 1267.76083
[3] Elman, H.; Howle, V. E.; Shadid, J., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, J. Comput. Phys., 227, 1790-1808 (2008) · Zbl 1290.76023
[4] Behara, S.; Mittal, S., Parallel finite element computation of incompressible flows, Parallel Comput., 35, 195-212 (2009)
[5] Shang, Y. Q.; He, Y. N., Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations, Appl. Numer. Math., 60, 7, 719-737 (2010) · Zbl 1425.76147
[6] Shang, Y. Q.; He, Y. N., A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 209-212, 172-183 (2012) · Zbl 1243.76022
[7] Xu, J. C.; Zhou, A. H., Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., 69, 881-909 (2000) · Zbl 0948.65122
[8] Xu, J. C.; Zhou, A. H., Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems, Adv. Comput. Math., 14, 293-327 (2001) · Zbl 0990.65128
[9] He, Y. N.; Xu, J. C.; Zhou, A. H., Local and parallel finite element algorithms for the Navier-Stokes problem, J. Comput. Math., 24, 3, 227-238 (2006) · Zbl 1093.76035
[10] Ma, Y. C.; Zhang, Z. M.; Ren, C. F., Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier-Stokes equations, Appl. Math. Comput., 175, 786-813 (2006) · Zbl 1087.76068
[11] Ma, F. Y.; Ma, Y. C.; Wo, W. F., Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations, J. Appl. Math. Mech., 28, 1, 27-35 (2007) · Zbl 1231.65216
[12] He, Y. N.; Mei, L. Q.; Shang, Y. Q.; Cui, J., Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations, J. Sci. Comput., 44, 1, 92-106 (2010) · Zbl 1203.76003
[13] Shang, Y. Q., A parallel two-level linearization method for incompressible flow problems, Appl. Math. Lett., 24, 364-369 (2011) · Zbl 1205.35210
[14] Shang, Y. Q.; He, Y. N.; Luo, Z. D., A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations, Comput. Fluids, 40, 249-257 (2011) · Zbl 1245.76056
[15] Shang, Y. Q.; He, Y. N.; Kim, D. W.; Zhou, X. J., A new parallel finite element algorithm for the stationary Navier-Stokes equations, Finite Elem. Anal. Des., 47, 1262-1279 (2011)
[16] Layton, W.; Lee, H.; Peterson, J., A defect-correction method for the incompressible Navier-Stokes equations, Appl. Math. Comput., 129, 1-19 (2002) · Zbl 1074.76033
[17] Wang, K., A new defect correction method for the Navier-Stokes equations at high Reynolds numbers, Appl. Math. Comput., 11, 216, 3252-3264 (2010) · Zbl 1425.35139
[18] He, Y. N.; Li, J., Two-level methods based on three correction for the 2D/3D steady Navier-Stokes equations, Int. J. Numer. Anal. Model. Ser. B, 2, 1, 42-56 (2011) · Zbl 1276.76041
[19] Shang, Y. Q., A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations, J. Comput. Phys., 233, 210-226 (2013) · Zbl 1286.76035
[20] Zheng, H. B.; Hou, Y. R.; Shi, F.; Song, L. N., A finite element variational multiscale method for incompressible flows based on two local gauss integrations, J. Comput. Phys., 228, 5961-5977 (2009) · Zbl 1168.76028
[21] Hughes, T.; Mazzei, L.; Jansen, K., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 47-59 (2000) · Zbl 0998.76040
[22] Layton, W., A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133, 147-157 (2002) · Zbl 1024.76026
[23] Kaya, S.; Riviére, B., A two-grid stabilization method for solving the steady-state Navier-Stokes equations, Numer. Methods Partial Differential Equations, 22, 728-743 (2005) · Zbl 1089.76034
[24] John, V.; Kaya, S., A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput., 26, 1485-1503 (2005) · Zbl 1073.76054
[25] Adams, R., Sobolev Spaces (1975), Academic Press Inc.: Academic Press Inc. New York · Zbl 0314.46030
[26] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (1986), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0585.65077
[27] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19, 2, 275-311 (1982) · Zbl 0487.76035
[28] Hood, P.; Taylor, C., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, 1, 73-100 (1973) · Zbl 0328.76020
[29] Girault, V.; Raviart, P.-A., Finite Element Approximation of the Navier-Stokes Equations (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0413.65081
[30] Kaya, S.; Layton, W.; Riviere, B., Subgrid stabilized defect correction methods for the Navier-Stokes equations, SIAM J. Numer. Anal., 44, 1639-1654 (2006) · Zbl 1124.76029
[31] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam · Zbl 0568.35002
[33] He, Y. N.; Li, J., Convergence of three iterative methods based on finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 1351-1359 (2009) · Zbl 1227.76031
[34] Layton, W., A two level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26, 5, 33-38 (1993) · Zbl 0773.76042
[35] Ghia, U.; Ghia, K.; Shin, C., High-\(Re\) solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.